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INTRODUCTION 

I n  recent years advanced research and technology i n  science and 

eriineerkig have created 8 nee6 fo r  newly 5i-prm-d aiid highly i r ; t r icate  

instrumentation. In  par t icular ,  i n  the Aerospace f i e ld ,  one of the many 

new demands on instrumentation has been for the  development of a pressure 

transducer with an extended frequency response tha t  i s  capable of accurately 

measuring very low pressures. 

I n  the  measurement of very low pressures,, microscopic changes 

i n  the properties of the  sensing mater ia l  become extremely important. 

Many of the pressure transducers t ha t  a r e  presently being used f o r  low 

pressure measurements provide an indirect  measure of pressure changes. 

That is, in  these instruments the pressure of a gas is determined as a 

quantitative Eeasure of the In_icroscopic changes of the propertj-es (such 

as thermal and e l e c t r i c a l  changes) of a par t icu lar  material  t o  which the 

gas i s  exposed. The major disadvantage of t h i s  indirect  measurement i s  

t h a t  t he  degree of change of the properties of the sensing element is  not 

only dependent upon gas pressure, but also upon the composition of the 

gas and t o  the e f fec ts  of environmental changes such as temperature changes. 

Hence, i n  u t i l i z ing  these instruments, it becomes necessary t o  provide 

a corrrect ion fac tor  f o r  each gas and f o r  different  environmental conditions. 

A more precise measurement can be obtained i f  the gas pressure 

The advantage of a i s  d i r e c t l y  measured by a mechanical sensing device. 

d i r e c t  measurement i s  tha t  the pressure measurements a r e  independent of 

the  nature of the  gas.  
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I n  the  low pressure range, the  McLeod gauge has been the  only 

mechanical device capable of accurately measuring pressures as low as 

of mercury. However, i n  the last twenty years capacitive pressure 

transducers have been designed f o r  the measurement of very low pressures. 

This type of transducer u t i l i z e s  the  concept by which a physical quantity, 

i n  t h i s  case a pressure, def lects  a sensing element producing a capacitance 

change. The transducer consists of a pressure sensit ive metall ic diaphragm 

symmetrically placed between two fixed electrodes thus forming a d i f f e ren t i a l  

capacitor.  This d i f f e ren t i a l  element makes up the  two act ive arms of a 

bridge network which i s  excited by an AC source of several  kc/sec. The 

application of pressure t o  the diaphragm displaces the diaphragm from i t s  

equilibrium position thus causing a d i f f e ren t i a l  change of capacitance. 

This capacitance change produces a bridge e r ror  o r  output voltage which i s  

amplified and fed t o  a phase sensi t ive detector that determines the  

d i E c t i o n  of unbalance and develops a DC voltage. 

can then be used: 

The f i n a l  output voltage 

1. 

2. 

i n  a forward o r  open loop system and d i r ec t ly  recorded; 

or  i n  a feedback o r  closed loop system. 

Capacitive pressure transducers or iginal ly  u t i l i zed  a t h i n  plate  

as t h e i r  sensing element and operated as an open loop system. A t h i n  plate  

is a diaphragm which has a restoring force due t o  i t s  s t i f fnes s  (Modulus of 

E l a s t i c i t y ) .  The sens i t iv i ty  of a thin plate  i s  inversely proportional to 

its s t i f fnes s  or  mechanical spring constant. Consequently, since these 

pressure transducers u t i l i zed  t h i n  plates t h a t  had a high modulus of 
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e l a s t i c i t y  they were not very sensit ive t o  constant accelerating forces; 

however, they a l so  exhibited a poor sens i t iv i ty  t o  low pressures. 
I 

These instruments experienced a high frequency response because 

the  na tura l  frequency of a t h i n  plate i s  proportional t o  t h e  square root of 

i t s  s t i f fnes s .  Furthermore, because the  sensing element was very s t i f f ,  

it experienced only s m a l l  deflections.  Consequently, these pressure t rans-  

. ducers had a high degree of l inear i ty .  

In order t o  increase the  instrument's sens i t iv i ty  t o  low pressures, 

t h e  sensing element w a s  made very th in  and was weakly s t ressed.  

it became a weakly s t ressed membrane and i t s  s t i f fnes s  became negligible 

compared t o  i t s  tension. 

I n  essence, 

The sens i t iv i ty  of a merribrane i s  inversely proportional t o  i t s  

tension. Hence, by u t i l i z ing  a weakly s t ressed membrane, the instrument's 

s ens i t i v i ty  t o  low pressures increased. However, by, making the weakly 

s t ressed sensing element very t h i n  both i t s  mass and mechanical spring 

constant decreased; hence, i t s  sens i t iv i ty  t o  constant accelerating forces 

did not change. 

Furthermore, because of being weakly stressed and very thin,  

the  sensing element experiences larger  deflections when disturbed by 

a d i f f e r e n t i a l  force. 

because the  transducer was only l inear  for very s m a l l  deflections.  

because the frequency of a membrane i s  proportional t o  the  square root of 

i t s  tension a weakly stressed membrane had a low frequency response. 

This decreased the  l i nea r i ty  of the  instrument 

HDwever, 

This 
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was a disadvantage i n  t h a t  it gave the system a slow response but it 

w a s  a l so  m advantage because it made the  system insensi t ive t o  high 

frequency disturbances such as high frequency v ib ra t -5~~1  b ar? aircrart; 

Other d i f f i c u l t i e s  were a l so  causedby the  adverse e f fec ts  of t he  

associated c i r cu i t ry  which were costly and complex. 

I n  an attempt t o  eliminate some of these disadvantages, the 

By increasing concept of the highly s t ressed merribrane was developed. 

t he  tension of the membrane, i t s  frequency response increased, result ing 

i n  a fast time response. 

experiences smaller deflections.  

I n  addition, a mechanically s t ressed menibrane 

Thus, the instrument's range of 

l i n e a r i t y  increased. 

However, since the sens i t iv i ty  of a membrane i s  inversely 

proportional t o  i t s  tension (stiffhess), a highly s t ressed membrane i s  

less sensi t ive t o  low pressures. 

i s  as stiff as a t h i n  plate,  i t s  pressure sens i t i v i ty  would be equal t o  

the  pressure sens i t i v i ty  of a t h i n  plate .  However, because t h e  mass of 

the memarane i s  very sza l l ,  a highly s t ressed membrale i s  l e s s  sensi t ive 

t o  constant accelerating forces than a th in  plate .  

a highly s t ressed membrane has improved the instrument's s igna l  t o  noise 

r a t io ;  t he  r a t i o  of percent of deflection due t o  a pressure force t o  the 

percent of deflection due t o  a constant accelerating force has increased. 

In fac t ,  i f  a highly s t ressed membrane 

Consequently, u t i l i z ing  

A disadvantage of a highly s t ressed  membrane i s  tha t  environ- 

mental e f fec ts  such as temperature changes e f fec t  t h e  cal ibrat ion of the 

instrument by a l te r ing  the tension of t he  membrane. Hence, i n  order t o  

obtain accurate pressure roeasuremen-ts, it i s  necessary t o  monitor other 
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parameters i n  the  system. 

membrane, t h e  performaace of the transducer is  dependent upon the  mechani- 

c a l  properties of the  sensing element. 

Consequently, by u t i l i z ing  a highly s t ressed 

It w a s  anticipated tha t  by employing a weakly s t ressed menibrane 

i n  a feedback loop, the  sensing element could be e l ec t ros t a t i ca l ly  s t i f fened.  

By replacing the  mechanical s t i f fness  of the  sensing element by a st iff  

e l e c t r i c a l  spring the  system's p e r f o m c e  would be made independent of the  

mechanical properties of the  merdbrane and i t s  l i nea r i ty  would be increased. 

Furthermore, i t s  acceleration sens i t iv i ty  would be l e s s  than sens i t i v i ty  of 

a t h i n  plate .  It i s  the  purpose of t h i s  report t o  analyze and design closed 

loop capacitive pressure transducers t o  achieve t h i s  goal. 

This report begins with the theo re t i ca l  design analysis of a 

forward loop capacitive pressure transducer. 

evaluate the  e f f ec t s  of closing the  loop by introducing an e l ec t ros t a t i c  

feedback loop around the  transducer. 

weakly stressed diaphragm, i s  theoret ical ly  designed. The investigation of 

t h i s  closed loop system involves a frequency and dynamic response synthesis 

of t he  system and an analog simulation study. 

report  discribes the  construction of a closed loop system which i s  used 

t o  experimentally ver i fy  the theore t ica l  resu l t s .  

Next, an analysis i s  made t o  

A closed loop system, u t i l i z ing  a 

The f i n a l  portion of t h i s  

This report  a l so  contains four 8ppendices which deal  respectively 

with: 

resonators; determination of the t ransfer  function of a capacitance bridge 

network with two act ive d i f fe ren t ia l  arms; and the theore t ica l  analysis of 

a var iable  capacitor re la t ing a d i f f e ren t i a l  displacement t o  the r e s u l t i q  

d3.fferential change i n  capacitance. 

the theo re t i ca l  investigation of diaphragm; theory of acoustic 



Theory 

A .  Capacitive Pressure Transducer 

Figure 1 represents a cross section of a symmetrical capacitive 

transducer. 

phragm i s  clamped along i t s  perphery under a r a d i a l  tension T.  The d i s -  

phragm has an effect ive radius "a" measured from the inside edge of the 

clamp and an inf ini tes imal  thickness h .  

do between two stat ionary electrodes of radius R ' .  

symmetrically between the  electrodes because t h i s  configuration leads t o  

the simplest analysis and represents the optimal design. The transducer 

constructed i n  this manner forms a d i f f e ren t i a l  p a r a l l e l  capacitor. 

It consists of a t h i n  metallic c i r cu la r  diaphragm. The dia- 

It i s  central ly  placed a distance 

The diaphragm i s  placed 

If t h e  transducer w a s  s tationary and the diaphragm not ferromagnetic, 

three forces can ac t  on the diaphragm. 

1. Mechanical force: caused by a disturbing pressure AP 

Fw= 33-d A P  I 

2. Gravitation force: caused by t i l t i n g  the diaphragm from i t s  

v e r t i c a l  posit ion by an angle 8 

FG = (TI-&) ~ g h  sw e 

For t h i s  study the effect  of t he  grav i ta t iona l  force on the  

diaphragm w i l l  be considered negligible and omitted from the  

analysis.  

2 



3.  Electro-s ta t ic  force: caused by the  application of  a voltage 

t o  one o r  both sides of the  d i f f e r e n t i a l  capacitor while the 

diaphragm i s  grc1m6ed 

(non-linear ) 3 

When acted upon by one of these disturbing forces, the resu l tan t  motion 

of the diaphragm i s  dependent upon its mechanical charac te r i s t ics .  

A contains a detai led study on the  theory of diaphragms. From equations i n  t h i s  

Appendix, it is assumed tha t  t h e  diaphragm used i n t h i s  study is characterized as a 

menibrane. 

bance P D’ 

Appendix 

When the  diaphragm i s  subjected t o  a uniform pressure d is tur -  

membrane theory shows t h a t  t h e  resul tant  deflection i s  assumed 

t o  vary l inear ly  with pressure proviaed &ck - 0.01. 
d o  

This re la t ionship i s  expressed by Equation A-52 

’I- -(%SI 
where yo, the  center deflection i s  

and ‘TI i s  the  deflection measured f r o m  the  equilibrium position of the 

diaphragm. 

When measured from the surface of t he  fixed electrodes, the 

electrode spacing becomes 

A-52 

A-51 

4 

where the  plus or  minus signs depend on whether the diaphragm i s  deflected 

towards or  away from the reference electrode. 



B. Capacitance Bridge 

Figure 4 is  a simplified diagram of a capacitance bridge with 

two act ive arms excited by a constant frequency 8.c. source. 

variable capacitors correspond t o  the two sides of the d i f f e r e n t i a l  

pressure transducers. The capacitance of each of the four elements is  

equal t o  the  capacitance of one side of t he  d i f f e ren t i a l  transducer with 

The two 

the  diaphragm i n  i t s  undeflected s ta te .  

expresses the capacitance of t h i s  para l le l  plate  capacitor as 

Equation D-2 i n  Appendix D 

D -2 

When the  diaphragm i s  in i t s  equilibrium position, a l l  of the  bridge 

elements a re  of equal capacitance and the  bridge is  considered t o  be 

balanced. The balancing relationship, as taken from Appendix C, i s  

c-3 c,c, = c,c, 

When t h i s  equation is  sa t i s f ied ,  there i s  no output voltage from the bridge. 

But when the  diaphragm is subjected t o  a disturbing force, it i s  displaced 

a distance Mo from i t s  equilibrium. 

c a l  d i f f e ren t i a l  capacitor i s  inversely proportional t o  the  electrode spacing, 

a d i f f e r e n t i a l  change i n  the  spacing, LM0, w i l l  r esu l t  i n  a d i f f e ren t i a l  

change i n  capacitance, ACo, on each side of t he  transducer. 

derives an equation relat ing the variation i n  electrode spacing Mo t o  the 

resu l t ing  capacitance change AC, for a variable capacitor. 

Since the  capacitance of t h i s  symm2tri- 

Appendix D 

To a first order 

approximation i n  __ *O t h i s  relationship i s  given by.Equation D - l l  
a, 

D-11 
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The resul t ing change i n  capacitance off balances the  bridge 

and produces an output voltage from the bridge. The expression relat ing 

the  bridfige o1Jrtpxrb voltage, V,, 30 %he cape i t i s re  chmge, AC,, i s  Clerived 

i n  Appndix C and i s  
~ 

c-17 
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CIEAPTER I1 

FORWARD LOOP ANALYSIS 
I 

A. Design of the Forward Loop 

Figure 5 shows a schematic representation of the uncompensated 

forward loop system. It consists of t he  capacitive pressure transducer, 

the  capacitance bridge c i r c u i t  and an amplifier.  The system i s  a l so  

represented i n  block diagram form in Figure 6 . 
"he f i rs t  two t r ans fe r  functions Gl(s) and G ~ ( s )  of the  forward 

loop system are  re la ted t o  the  transducer. An analysis of the  dynamics 

of the  transducer considers the transducer as consisting of two coupled 

sections.  The first section i s  the length of tubing leading t o  the  t r a n s -  

ducer and the  air  cavity tha t  ex is t s  between the  electrode and the  diaphragm. 

m- A-I l e  second section i s  t'ne diaphragm. Tne motion of the  a i r  i n  t'ne cavity i s  

coupled t o  t h e  motion of the diaphragm by the volume of air  in the cavity 

(which mutually ac t s  on both sections). 

Appendix B explains t h a t  the air  cavity ac ts  l i ke  an acoust ical  

resonator and shws  t h a t  the motion of the  a i r  i n  the enclosure i s  des- 

cribed by a simple second order d i f f e ren t i a l  equation 

or expressed as a t r ans fe r  function 

B-26 
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where 

B -24 

This Appendix explains t h a t  because of t he  long length of tubing leading 

to t he  cavity, the  damping i s  principally caused by the  viscous f r i c t i o n  

in the  tubing, 

comparably negl igible .  

while the  damping due t o  radiat ion loss  from the  cavity i s  

The volume of air  i n  the  cavity couples the  pressure disturbance 

t o  t h e  diaphragm. 

posit ion.  Appendix A contains a detailed study on diaphragms. From 

equations i n  t h i s  Appendix, the  diaphragm i s  assumed t o  have the  characteris-  

t i c s  of a meI&rane. 

theory, t h e  motion of t he  diaphragm, when acted upon by a disturbing pressure 

force,  is  expressed by a second-order d i f f e r e n t i a l  equation with the  followirig 

t r a n s f e r  function 

Its motion disturbs the diaphragm from i t s  equilibrium 

This w i l l  be proven in a l a t e r  section. From membrane 

where 

5 

A-13 

(obtained from Equations 
A-22 and A-13) 5- A 

The gain K i s  evaluated under s teady  s t a t e  conditions i n  t h i s  same Appendix 

and i s  found t o  be equal t o  

a" 
@ = =  r A-51 



Consequently, by the  above requirements, the  pressure transducer can be 

represented by a second order t ransfer  function whose damping and frequency 

a r e  cha rac t e r i s t i c  only of t he  dia3hragm. 
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A t  t h i s  point, the  analysis can be simplified if  the  coupling 

between the two t ransfer  functions, G ( s )  and G 2 ( s ) ,  can be eliminated. 

The dynamics of these two second order systems can be uncoupled i f  t h e i r  

1 

natura l  frequencies ( o r  resonance region) a re  i n  widely separated regions 

i n  the  frequency domain. Hence, i f  sx, the  natural  frequency of G1( s ) ,  

can be made several  times larger  than wnDj then i n  e f f ec t  t he  two systems 

a re  uncoupled. 

the cavi ty  volume decreases. 

should be designed fo r  a minimum in te rna l  cavity volume. 

i s  most ea s i ly  changed by varying the electrode spacing do. 

t h i s  spacing can be made infinitesimally small, but f o r  prac t ica l  applica- 

. From Equation B-24 it i s  observed tha t  wna increases as 

Hence, i n  order t o  increase wnqthe transducer 

This dimension . 
Theoretically, 

t ions ,  t h i s  i s  not possible. There is  a re la t ion  between the  electrode 

spacing of a p a r a l l e l  p la te  capacitor and the voltage applied across the 

gap. This i s  known as Paschen's Law and must be considered in choosing 

the min imum allowable electrode spac ing .  

Hence, when o-perating i n  the frequency range of the diaphragm, 

the  dynamics of the  system are  unaffected by G ( s )  i f  wnq>> uno. Further- 

more, by t h i s  requirement, it can be assumed tha t  - << 1. Hence, f o r  the 

operating frequency range encountered i n  t h i s  analysis, the t ransfer  function 

1 
1 

Wnft 

fo r  t h e  resonator may be approximated as 



As previously s ta ted i n  Chapter I, the  transducer i s  a d i f f e r e n t i a l  

. capacitor making up two arms of a capacitance bridge net+rork which i s  

excited by an A.C. source. 

d i f f e r e n t i a l  p a r a l l e l  plate  capacitor is  given by the  Equation D-2. 

When disturbed by a pressure difference, t he  motion of the diaphragm r e s a t s  

i n  a d i f f e r e n t i a l  change i n  capacitance A t ,  on both sides of t he  transducer. 

This capacitive unbalance on each side of the  d i f f e ren t i a l  capacitor 

The capacitance c, of each s ide of t h i s  variable " 

( c o  + Aco, co - bo) produces an output s ignal  from the  bridge. 

Appendix C t he  expression relat ing the output s ignal  t o  the d i f f e r e n t i a l  

From 

change in capacitance i s  expressed as .. 

c-17 

Appendix D derives an expression relat ing the  capacitive change AC, on 

one s ide of the  symmetrical transducer t o  the  deflection of the  diaphragm 

M,. This relat ionship i s  expressed as 

where 

D - 1 1  

D - E a  

Substi tuting Equation D-11 i n to  Equation C-17 the  following equation is  

obtained re la t ing  the diaphragm deflection t o  the resul t ing bridge output 

s igna l  

c-19 

7 



Now as a design requirement, it is desirable t o  i so l a t e  the  frequency 

response of the transducer from the possible unstabil izing e f f ec t s  of 

other elements i n  the  forward loop. 

fixed by the  character is t ics  of the  diaphragm. 

t o  design the other elements i n  the loop such t h a t  t h e i r  frequency i s  

much la rger  than Q. but by 

referr ing t o  Appendix C, it is seen that  when Equation C-19 i s  transformed 

The frequency of the transducer is  

Hence, it is necessary 

It would be preferable t o  s e t  CY >> 

to bode form, the system's loop gain i s  attenuated by the fac tor  a. 

it w i l l  be required t o  have a maximum output signal,  an attenuation i n  

gain i s  not desired. 

such t h a t  CY < wm. 

Since 

On t h i s  basis ,  the bridge c i r cu i t  must be designed 

Now a, as defined, is inversely proportional t o  R and Co.  Since L 
C, is  fixed by tiie geometry of Vne transducer, E 

control  on CY. 

decrease CY it i s  necessary f o r  51 t o  be very large.  

requirement i s  t o  have a maximum output voltage from t h i s  bridge. 

requires % t o  be very large in order t o  prevent loading of t he  bridge. 

i s  the  only var iable  
L 

Hence, it i s  observed from Equation 7 t h a t  i n  order t o  

Fortunately another 

This a l so  

Figure 34 i s  a Thevenin equivalent c i r c u i t  fo r  the  capacitance 

Note t h a t  since a l l  four capacitors i n  the bridge c i r c u i t  a re  bridge. 

equal, t he  equivalent capacitance i s  a l s o  C . 
0 
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In  designing a measuring system it i s  desirable t o  eliminate 

errors such as noise, inherent in the e l e c t r i c a l  c i rcu i t ry .  Equation8 

gives t h e  general equation for finding the noise voltage of a circui t .  

8 K = Boltzmann's Constant 

T = Temp. (degree Kelvin) 

R(w) corresponds t o  the r e a l  component of the  t o t a l  impedance of the 

c i r cu i t .  For the  Thevenin equivalent c i r c u i t  under discussion, 

Hence, when t h i s  expression i s  substi tuted i n t o  Equation 8, the  noise 

voltage fo r  t h i s  c i r c u i t  is evaluated as 

el- - - K7- 
C- 

For a l l  p rac t i ca l  purposes, t he  value of t h i s  term is  small and can be 

neglected from the  analysis. 

A fur ther  simplification can be made i n  t h i s  analysis by re -  

quiring t he  bridge: t o  be  excited by a high frequency A.C.  signal .  Since 

cy < WnD, it can be shown t h a t  by set t ing a, t h e  frequency of the A.C. 

source, much la rger  than wd, the  following approxination can be made 

By t h i s  Sssungkion, Equation C-19 can be rewritten as 

IO 

C -  29 
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where VE = VE sin !Lk. Since the  oatput w i l l  be rec t i f ied ,  it i s  only 

necessary t o  consider the absolute magnitude of V Thus, the  t r ans fe r  

function G ( s )  re la t ing  the  rec t i f ied  bricige output t o  tile displacerIieiit 

of the diaphragm i s  expressed as 

E '  

3 

Hence, by requiring R >> cy, t he  output becomes insensi t ive t o  changes of 

t he  bridge excitation frequency. 

s t r a t ed  i n  Appendix C where the proof i s  worked out i n  t h e  time domain. 

ThZs approximation has a l so  been demon- 

~- 

The fourth element, G4(s) i n  the forward loop amplifies the  

output voltage from the bridge. 

the  system i s  expressed as 

Hence, the  r ec t i f i ed  output voltage of 

where 

By combining Equations 5 ,  6, 11, 12 an expression for the  complete 

forward loop t ransfer  function i s  obtained. 

output voltage v t o  input pressure disturbance P 

This expression re la tes  the 

as follows 
D 

In  conclusion, the mathematical model f o r  the  forward loop system has been 

reduced t o  a second order a i f f e ren t i a l  equation character is t ic  of the motion 

of t he  membrane. The forward loop gain defined as 

14 
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S m m r y  of the  Forward Loop Design Requirements 

(1) Want a minimum cavity volume f o r  the  transducer in order 

t h a t  

A *  wns >> wnD 

B. G 1 ( s ) E  1 

c .  Consequently G (s)  and G 2 ( s )  do not have coupled modes. 1 

(2 ) want R~ very' large 

A .  Maximum output signal 

: c y < %  

(3 )  Want h2 >> CY such tha t  

A .  G3(s) E gain 

B. G 3 ( s )  w i l l  be insensit ive t o  small frequency varrations 

(4) M a x i m u m  Gain 
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B. Construction of  the Forward Loop 

The forward loop system o f t h e  capacitance pressure transducer 

consists of four m a i n  parts:  

phragm housing, and the bridge network. 

system have been given i n  the previous section and i t s  construction w i l l  

now be considered. 

the diaphragm, the  electrodes, the dia-  

The design requirements f o r  t h i s  

. 

A. Diaphragm 

The diaphragm i s  made from a 1/2 m i l  rqylar f i lm with a 1/4 m i l  of 

aluminum vacuum deposited on each side. 

of the metall ic diaphragm i s  l m i l .  

-mder a r ad ia l  tenszm, T, of 0.10 Il;s/in o r  17.5 newtons/m. 

effect ive radius, a, i s  0.75 i n .  

phragm i s  a function of i t s  mechanical and physical properties. 

A-5 03 Appendix A derives a graphical method of determining the  "Funda- 

mental Natural Frequency of a Stretched, Circular, Clamped, F la t  Diaphragm." 

Consequently, h, the thickness 

The diaphragm i s  circular ly  clamped 

Its 

The na tura l  frequency,wno, of the  dia-  

Section 

As outlined i n  tha t  section, the  first s t ep  i n  determining the 

na tu ra l  frequency of t he  diaphragm i s  t o  evaluate Equation A-45 



- 25 - 

Sukstituting these values and the  dimensions given above in to  Equation A-45, 

it i s  evaluated as 1025. 

freqEency of t h i s  6 i aphrqp  i s  theoret ical ly  found t o  be 300 c i s .  

With the a id  of Figure 29 and Table 2 the 

From 

t h i s  analysis, it w i l l  be assumed that  t h i s  diaphragm has the  character is t ics  

of a membrane. However, experiments on the diaphragm found it t o  have a 

frequency of only 60 c / s  and a damping of 0.1 (see Figure 31). 

experimentally determined value w i l l  be considered the correct frequency 

This 

of the diaphragm and w i l l  be used for  the  theo re t i ca l  a n a l p i s .  

B. Electrodes 

As previously explained, two c i r cu la r  aluminum electrodes a re  

used i n  t h i s  system. 

port consisting of a 4" length of copper tubing 0.25" diameter located 

along t h e i r  cen t r a l  axis. 

Each electrode has a 0.75" radius and has an input 

The electrodes a re  symnetrically placed a t  a fixed distance do 

f r o m  both sides of the diaphragm. 

Set i n  Chapter 2, it i s  necessary t o  minimize the  electrode-diaphragm 

I n  accordance with the requirements 

spacing. It w a s  determined tha t  se t t ing  do = 4 mils s a t i s f i e s  the design 

requirements. The only r e s t r i c t ion  now i s  on the  maximum voltage t h a t  can 

be applied across t h i s  air  gap. From Paschen's curve given in Figure 2, 

it i s  seen t h a t  the maximum voltage i s  a function of the  plate  separations 

and the  a i r  pressure. 
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C .  Diaphragm Housing 

I n  order to es tab l i sh  the desired diaphragm-electrode space, 

a t e f lon  ring 4 m i l s  th ick  i s  cexbrally plzczd on each sLde of t he  

clamped diaphragm. The ring has an 1.D = 1 . 5 1 ~ .  and an 0.D = 2ru. 

By t i g h t l y  clamping the electrodes against each ring, an in te rna l  

cavity with a volume of i s  created on each 

s ide o f t h e  diaphragm. The i n l e t  port on the electrodes mkes each 

eavity accessible f o r  pressure measurements. 

when a long length of tubing i s  connected t o  these ports an acoustical  

resonator i s  formed on each s ide of the diaphragm. 

- & m ~ L s  (Td) = ~ . I F J O - ’ I ~  

As described i n  Appendix B, 

From Equation B-24 t he  natural  frequency f o r  the acoustical  

system i s  calculated as 3000 c / ~  . Thus, by choosing an electrode- 

diaphragm spzictng of 4 ~ i l s  the zEte_rllal cavit.y volme i s  mintaizea. 

Hence, as seen from Equation 3-24 wns becomes much larger  than wno. 

explained i n  Chapter I1 t h i s  satisfies the  requirement needed to uncouple 

the  dynamics of the acoust ical  system from the  dynamics of the dizphragm. 

A s  

D. Bridge Network 

As previously explained i n  Chapters I and 11, the  e l e c t r i c a l  

c i r c u i t r y  of the forward loop consists of a capacitance bridge network 

with two act ive arms. The diaphragm-electrode configuration described 

above represents a d i f f e ren t i a l  capacitance pressure transducer. 

two s ides  of t h i s  variable capacitor nake up the  two act ive elements of 

the  capacitance bridge. 

Figure 4 . m e  capccitance of each side of the  t ransdwer  i s  eqzal 

The 

This arrangement is  schematically represented i n  
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and i s  a function of i t s  geometry. 

capacitance of each side of the  transducer can be evaluated from 

Equation D-2 as 

For the above dimensions, the  

However, experimental t e s t s  on the  transducer found it t o  have a capa- 

citance of 240 ppf. I n  order t h a t  a l l  four capacitive elements i n  t h e  

bridge network are  equal, the two fixed capacitors a re  a l so  chosen as 

240 pwf. 

. 

The last design requirement on the c i rcu i t ry  i s  fo r  R, the  

frequency of the A.C. bridge excitation, t o  be much larger  than a.  

Now Q i s  expressed as 

RL is  chosen as 30 mega-ohms and C, is given above. 

(;Y i s  evaluated as 300rad/sec. Hence, by choosing R = 20 kc, R >> a 

For these values, 

o r  

<e 1 and the  approximations made i n  Chapter I1 are  va l id .  
si 
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CHAPTER 111 

Closed Loop Analysis 

Table 3 summarizes some of  t he  important charac te r i s t ics  

of an open loop capacitive pressure transducer for  three d i f fe ren t  types 

of sensing elements. 

forward or open loop system has the advantage of featuring a simple and 

s table  operation, it can a l so  have some undesirable features.  One 

negative consequence of an open loop system is the dependence of t he  

controlled output on the cal ibrat ion of the  intermediate components. 

Now, it can be generally s ta ted t h a t  although a 

Another disadvantage is  t h a t  the output var ies  due t o  load changes, ex- 

t e r n a l  disturbances and noise w i t h i n  t he  system. 

The question now ar i ses  as t o  i f  it i s  possible t o  design a system 

t o  minilnize these disadvantages. Now, i n  general, i f  a system's require- 

ments cannot be sa t i s f i ed  by an open loop system, the desired accuracy of 

cont ro l  can be obtained I n  t h i s  type 

of system, the output i s  determiried, fed-back and capa red  with the systec?'s 

input.  

by employing a closed loop system. 

The difference between the  actual  s t a t e  (output) and the desired 

s t a t e  ( input)  i s  the e r ror  o r  actuating signal.  

drive the  ac tua l  s t a t e  towards the desired s t a t e .  

This s igna l  i s  used t o  

The important differences between closed loop operation and 

open loop operation l i e  i n  the feedback path. 

which can a l s o  be c lass i f ied  as advantages can be summarized as follows: 

The e f fec ts  of feedback 
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1. Because the  closed loop system i s  accuated by the  e r ro r  

signal,  it continues t o  function u n t i l  the  e r ro r  i s  reduced 

t o  zero. Thus, feedback continuously reduces and eliminates 

the  e f fec ts  of e r rors  present i n  the  loop and consequently 

maintains a high degree of accuracy f o r  the  loop. 

2. Due t o  t h i s  increase i n  accuracy fo r  a closed loop system, 

it is unnecessary t o  periodically ca l ibra te  the instrument. 

3 .  Feedback reduces the effects  of nonl inear i t ies  which occur 

i n  the  loop. 

4. Feedback increases the  bandwidth of Yne open loop system 

thus improving its dynamic response and reducing i ts  t i m e  

constant. 

5 .  If t h e  open loop gain is  very large, it can be shown t h a t  

i n  a closed loop system, the input-output character is t ic  

of the  system is mainly a function of the feedback element. 

Thus, by using a closed loop system, the  forward loop char- 

a c t e r i s t i c s  are, i n  a sense, replaced by the  feedback 

charac te r i s t ics .  
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Although a closed loop system offers  several  advantages over an 

o-pen loop system, i t s  major disadvantage i s  complexity. Furthermore, a 

sui table  margin of s t a b i l i t y  for the  system must be obtained. 

Now the  ultimate design goal i n  t h i s  report i s  t o  produce a 

pressure transducer with an, extended frequency response t h a t  i s  capable 

of accurately measuring very low pressures. 

and as discussed i n  the introduction, it appears t h a t  it i s  possible t o  

From the above discussion 

achieve t h i s  goal  by u t i l i z ing  a capacitive pressure transducer with a 

weakly s t ressed membrane i n  a closed loop system. 

A p m c t i c a l  method of closing the  loop i s  by e l ec t ros t a t i c  

feedback. I n  such a scheme the  output s igna l  from the  bridge a f t e r  being 

amplified md r ec t i f i ed  i s  fed back t o t h e  electrode on the  high pressure 

s ide of the transducer. 

voltage creates an e lec t ros ta t ic  force, F,,, which opposes the pressure 

force on the  diaphragm. 

the  diaphragm a re  t o  effectively s t i f f e n  the diaphragm thereby increasing 

i t s  frequency response. 

With the diaphragm a t  ground potential ,  t h i s  

The effects  of these two opposing forces Cn 

By following a procedure similar t o  tha t  outlined in Section 1 

of Appendix D, an expression for  the  t o t a l  e lec t ros ta t ic  force, Fes, on 

a def lected diaphragm can be obtained as follows 



Npw t o  a f i rs t  order approximation i n  Mo , the  above in tegra l  becomes - 
a0 

16 

where 

i s  the e l ec t ros t a t i c  force of a t t rac t ion  between the  undeflected (or nulled) 

diaphragm and t he  electrode. 

When the  e l ec t ros t a t i c  force equals the  pressure force, the  

diaphragm i s  nulled; i .e ., Mo = 0 and the  following relationship holds 

where AD = surface area of the  diaphragm. 

t h i s  manner, t he  d i f f e ren t i a l  pressure force i s  nonlinearly related t o  the  

square of t he  r e c t i f i e d  output voltage. 

Hence, with the system s e t  up i n  

To simplify t h i s  analysis, it i s  preferable t o  l inear ize  the  

If a voltage i s  applied t o  both electrodes of t h e  above relat ionship.  

trmSduCer, it i s  possible t o  obtain a l i nea r  pressure scale for  the 
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instrument instead of a quadratic one. 

follows. 

Vi, i s  applied t o  the fixed electrodes of the transducers. 

d i f f e r e n t i a l  pressure def lects  the diaphragm, unbalancing the  bridge, 

the diaphragm movement i s  opposed by an e l ec t ros t a t i c  force resul t ing 

from an increase of voltage on one fixed electrode and a decrease on 

This can be accomplished as 

With the  diaphragm i n  i ts  nul l  position, an equal voltage, 

Knen the  

. the  other. The d i f f e r e n t i a l  change i n  voltage i s  denoted by v. 

M O  

d0 
- the net e l ec t ros t a t i c  force on the  To a first order i n  

diaphragm \S r 

I8 

I9 

L 

7 

Since the  voltage required t o  compensate the  maximum pressure d i f f e ren t i a l  

cannot exceed Vi, it follows 

20 

I n  f ac t ,  V. w i l l  be chosen such that v << V 
1 i' 

NOW from Equation D - l l ,  C-30 and 12, t he  following 

expression i s  obtained 

21 

then Equation 21 i s  l e s s  than unity. .This assump- AVE< ,. If - 
t i o n  toegt'ner with Equation 20 makes the second term i n  Eqatiion 

4 
19 

negl igible .  Hence Equation 19 can be writ ten as 
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Since V i s  a constant, Equation 2 2  can be wri t ten as 
i 

Therefore, by applying a voltage Vi to both electrodes, a l i nea r  pressure 

scale  is  obtained f o r  the transducer which d i r ec t ly  r e l a t e s  the  differen- 

t i a l  pressure disturbance t o  the  r ec t i f i ed  output signal.  

Another method of demonstrating tha t  t h i s  technique would 

i 
r e s u l t  i n  a l i nea r  pressure scale i s  t o  choose an operating point V 

along the  nonlinear curve expressed by Equation 3 

perturbation analysis about the operating point. 

analysis,  it becomes obvious tha t  the constant Ki i n  Equation 2’3 corresponds 

t o  the  slope of the nonlinear curve a t  the operating point. This slope 

then has t o  be multiplied by 2 as i n  Equation 2 3  because there  i s  an 

e l ec t ros t a t i c  force being contributed by both s ides  of the d i f f e r e n t i a l  

capacitor. 

and perform a l inea r  

By carrying out t h i s  

Throughout the remainder of the analysis,  the constant Ki i n  

Equation 2 3  s h a l l  be interpreted f r o m  a graphical l inear izat ion of 

Equation 3 . 
Since t h i s  transducer measures d i f f e r e n t i a l  pressures, Ai?, the 

operating voltage V.  may be chosen as any value as long as v << V.  

V i  cannot exceed the l i m i t  s e t  by Pzsche& Law.)  

voltage only determines the slope of l i nea r  pressure scale and consequently 

t h e  s e n s i t i v i t y  of the pressure - output voltage scale .  

(Note: 

The par t icular  operating 
1 

Now, in part icular ,  three operating voltages, Vi, a re  con- 

sidered along the  nonlinear curve. Figures 7, 8 , and 9 are  plots  

Of Equation 3 respectively showing the three operating vol.tages at  . 
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lOv, lo&, and SO&. The constant, K as previously explained, corres- 

ponds t o  the slope of the tangent l i n e  at  each operating point and these 

values are respectively obtained from Figures 7 , 8 and 9 as 

(8.2 x (8.2 x and (41-x lom2).  These values w i l l  be referred 

t o  respectively as KlO, K1OO, and K500' 

i' 

Recall from the  open loop analysis t h a t  f o r  s m a l l  deflection 

of the  membrane, the displacement is  l inear ly  proportional t o  the  disturbing 

pressure by the following expression 

A-51 . -  

I n  the  forward loop analysis AP is the input pressure disturbance, but 

i n  the  closed loop system AP becomes the  actuating e r ro r  signal.  

e r r o r  s igna l  f o r  t h i s  system i s  the difference between the  input disturbing 

pressure, PD, and the feedback "electrostat ic  pressure" Pes. 

The 

The electro-  

s t a t i c  pressure i s  created by the e lec t ros ta t ic  force acting on the surface 

area, %, o f t h e  diaphragm. 

expressed as 

Hence, LSP i s  a difference of pressures aad i s  

AP = - pes 

Thus, fo r  a closed loop system, Equation A-51  becomzs 

2 4  

'2 5 

26 
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From t h i s  expression it i s  obvious that the "e lec t ros ta t ic  pressure" 

being fed back i s  expressed as 

Hence, the  feedback t ransfer  function H(s) i s  

27 

28  

CoITibining Equations 5 ,  G , \ \  ,I2 , and 2 €3 the  input-output re la t ionship or  

the  closed loop t ransfer  function for t h i s  system i s  expressed as 

A @  
s ' t & 5 , (  - G(sj . - W k  w o  V(S1 - - 

1 A @ Y  Pi 
- 4 Z J D 5 4 - l  [ ' +  s' 

P, (SI I +G(s)H(S\ 

u n o  

where 

From Equation 2 9  the  charac te r i s t ic  equation fo r  t h i s  closed loop 

G (s) = G I  G, G3 G, 

system i s  

2 3  

' 3 0  

.- 
expanding 

From Equation31 the closed loop frequency, uno I and the damping, XD, / 

for t h i s  system are  respectively found t o  be 

3 2  

3 3  
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Hence, it i s  observed t h a t  the e f f ec t  of closing the  loop around the  

system has resul ted i n  an increase in  frequency of the weakly s t ressed 

diaphragm but a decrease i n  damping f o r  the  system. 

A fur ther  insight  on the e f fec ts  on feedback on the  weakly 

s t ressed  diaphragm can be obtained by expressing the  second order equation 

i n  Equation 31 

Subst i tut ing the  following expression i n t o  Equation 31 

in i t s  equivalent mechanical form (mass, spring,damper) . 

- 0 
- 2Jkw\ 

where 

-% = mechanical spring constant of diaphragm Ib/in. 

B = damping c o n s t a t  

m = mass of diaphragm 

it i s  rewri t ten as 

or 

I r32 0." = __c 

Note: 1. From Equation 14 

$==E ' V I M .  

2. Similarly 
+ = ! b _  

tu. 

3 .  Hence, $b can be expressed as 

C, 
where 9== -9( 

C', is  a constant i n  units of in2. and 

% i s  the  mechanical spring constant fo r  the dia2hragm. 

34 AND 35 

3 G  

37 
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Consequently, in Equation 3 7  

Hence, the  character is t ic  equation i s  rewrit ten as 

38 

From t h i s  equation the closed loop frequency and damping f o r  t h i s  system 

are respectively found as 

I R 

k + c , A W ;  

This r e su l t  i s  iden t i ca l  t o  Equation 3 2  and 33 . 

39 

40 

It i s  observed from these resu l t s  t h a t  feedback has e l ec t r i ca l ly  

increased the  spring constant of the weakly s t ressed diaphragm. From 
I 

Equation 5 3  the  new spring constant -p< for t he  closed loop system i s  seen 

41 

Since the  Oiaphragm i n  the fomard loop i s  weakly stressed, i t s  Eechanical 

spring constant -k i s  a very s m a l l  value. 

is  large 

Consequently, i f  the loop gain 

%Cc C , A V p ;  42 

Hence, Equation 41 can be expressed as 

4 = C, A X f ;  

Similarly, % i n  Equations 39 and 40 i s  a l so  negligible.  

Hence, the  conclusion i s  reached that  by employing a weakly stressed 

diaphragm i n  t h i s  closed loop system, the  mechanical s t i f fnes s  of the 

. 
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diaphrqm i s  replaced by an "e lec t r ica l  spring". This i s  a good 

accomplishment because t h i s  feedback loop has e l ec t ros t a t i ca l ly  

eliminated the  mechantcal properties of  t he  d i aqhrqp  whfch result. fn  

nonlinear behavior. in the  forward loop system. I n  e f fec t ,  i n  a closed 

loop system the  weakly s t ressed diaphragm i s  used as a boundary between 

the opposing e l ec t ros t a t i c  and pressure forces. Consequently, t h i s  

a l l ev ia t e s  t he  need t o  recal ibrate  the instrument i f  undesirable e f fec ts  

s l i gh t ly  a l t e r  the properties of the  sensbg  element i n  the forward loop. 

Theoretically, the only e r rors  i n  the  system should be a t t r ibu ted  t o  the  

l i nea r  approximat ion of t h i s  nonlinear physical law. 

Observe t h a t  closing the loop around the forward loop system 

did not change the order of the system. Therefore, t he  open loop t ransfer  

function of t h i s  closed loop system i s  s t i l l  a second order system and i s  

expressed as 

43 

where 5.; the  new open loop gain i s  expressed as 

Kz; = t6 'I( F; A 44 

As previously explained the second order system i n  Equation 43 i s  

charac te r i s t ic  of the dynamics of the diaphragm (membrane). 

From Chapter I1 the  frequency and damping r a t i o  fo r  t h i s  second 

order equation were calculated as 

s,, = 60 '/S 
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Figure ll shows t h e  frequency response for the open loop t r ans fe r  

function expressed by Equation 43 (for unity gain) .  
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Closed Loop Stab i l i ty  Compensation 

From the r e su l t s  of t he  previous chapter, it i s  concluded 

t h a t  it i s  highly advantageous t o  use a weakly stressed diaphragm i n  

a closed loop system. 

feedback around the forward loop did n o t  increase the order of the 

system. Consequently, the open loop t ransfer  function fo r  the  closed 

loop system remains a second order equation as expressed by Equation 43 

It was demonstrated tha t  the introduction of 

Although a closed loop second order system of t h i s  s o r t  i s  

theore t ica l ly  stable,  i t s  frequency plot shows t h a t  i t s  phase response 

asymptotically approaches 180° i n  t he  high frequency region (Figure I I ) . 
In des2gniPG a control  system, the yhase mrg2n, t ha t  i s  the  phase at  the 

frequency a t  which the amplitude response crosses the  Odb l ine ,  i s  a 

good p rac t i ca l  c r i t e r ion  of system s t a b i l i t y .  

s tab le  system requires a t  l ea s t  a 30' t o  45' phase margin. 

A s  a rule,  a sx t f i c i en t ly  

Referring t o  the open loop response i n  Figure I \  it i s  

observed t h a t  the maximum frequency at which the  amplitude plot could 

cross the  zero db l i n e  and satisf'y the above requirement i s  7oc/s .  
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The s t a b i l i t y  of the system can be improved by extending the 

frequency a t  which t h i s  phase margin occurs; i.e.,  extending the  frequency 

range of the system. This i s  readily accomplished by introducing a phase 

lead into the resonance and high frequency region of the system and thus 

extending i ts  frequency range. To achieve t h i s  increase i n  s t ab i l i t y ,  it 

i s  necessary to "compensate" the closed loop system. This is  accomplished 

by inser t ing i n t o  the  loop a complex t r ans fe r  function, G(jw), which has a 

posi t ive phase angle i n  the high frequency region. 

The idea l  compensation element would be a pure d i f fe ren t ia t ing  

function, but t h i s  cannot be obtained by the  use of passive networks. 

Therefore, use i s  made of a element with a t r ans fe r  function approaching 

tha t  of a d i f fe ren t ia t ing  element. 

or a "d i f f e ren t i a l  controUer'' and i t s  t r ans fe r  function i s  generally of 

t h e  form 

It i s  cal led a "phase lead" element 

44 

where 3; , i s  t h e  time constant of the network and the q u ~ n t i t y  "E:' i s  the  

"phase lead factor"  or "time constant ra t io ."  

Figure 12 shows a plot o f  t h i s  function fo r  several  values 

St can be seen from these plots  t h a t  the amount of phase lead i s  Of m,. 

determined by the  phase lead fac tor .  This relationship between & and 

I1 11 m, is  expressed as 

4 5  
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and i s  plotted in Figure I3 . The frequency a t  which the maximum phase 

angle occurs i s  

\ w, = 
3, .Irn, 

Above t h i s  frequency, t he  phase lead decreases as the gain increases. 

Hence, it is observed t h a t  t h i s  element ac t s  as a pure d i f fe ren t ia tor  

only i n  a l imited range. 

I n  defining a phase lead controller f o r  t h i s  system, care must 

be taken i n  the  selection of I'm',' and 3, . Examining Equation 43- , 
it is noted t h a t  phase lead compensation extends the frequency range of 

the system. That is, the feedback system becomes "m" time f a s t e r .  But 

the  open loop gain i s  attenuated by the same fac tor .  Thus, it becomes 

necessary t o  add an addi t ional  gain factor  elsewhere i n  the  system t o  

make up f o r  the  attenuation brought on by th i s  element. 

Since it i s  desired t o  extend the location of the 45' phase 

margin i n t o  the high frequency region of the system, a phase lead fac tor  

resu l t ing  i n  at l ea s t  a 45' phase lead i s  required. From Figure 13 it i s  

seen t'nat t h i s  requirement i s  met for  values of 

Care must a l so  be taken in choosing the time constant T, , or i n  other words, 

t h e  break frequency of t h i s  compensating network defined as 

It i s  important t h a t  t h i s  break frequency i s  not  placed far t o  t h e  r ight  

of the frequency of t he  second order term. 

frequencies would r e su l t  i n  sharp fluctuations i n  the  phase p lo t  which 

-!- fr . I  7 or "\, 2 5.8 
MI 

I a,= - 
9, ' 

A large separation i n  break 

would tend t o  drive the system towards i n s t a b i l i t y  (180~) i n  the  response 

reg ion. 
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Three values of "a:' are  examined; 10, 20, 100 and f o r  each 

case resul t ing open loop response i s  plotted f o r  several  values of 

W, . The frequency responses of the resul t ing compensation systems 

a re  shown i n  Figures 14a , l4l, , and 1qC fo r  each of t he  three cases. 

Figure 14 ident i f ies  the curves i n  these p lo ts .  

Although Figure 14' indicates t ha t  a lead fac tor  of 100 

res,ults i n  large increase of t he  frequency range of the  system, it a l so  

means t h a t  an addi t ional  amplification of 100 must be added t o  the system 

t o  correct f o r  the attenuation of 100  of t h i s  element. Thus, although 

it i s  desirable from the frequency standpoint t o  use a very large rn, 

there  a r e  prac t ica l  l imitat ions on t h i s  value. A s  demonstrated above, 

the  attenuating e f f ec t  of t h i s  element increases as t h e  phase lead factor  

increases and t h i s  loss  i n  gain must be made up fo r  elsewhere i n  the  loop. 

Hence, i n  practice,  it i s  customary to  use the value of m,ranging from 

4 t o  10 and i n  extreme cases, 20. 

Based on these requirements, response number 2 i n  Figure 140, 

represents t h e  most satisfactoryresponse fo r  the system. For t h i s  response 

m, = 10 and 7, = - OR u, =6z84/5 (loo yr). A s  seen from the plot  a phase lead 

compensation with these character is t ics  extends the  frequency range of the 

open loop System t o  1400 m **O0 s/s and resu l t s  i n  a nearly constant phase 

response of - 1 3 5 O  ranging from I O O C [ ~  to 500% 

I 

628 

Now i n  f i n a l  form, the  open loop  t r ans fe r  function for the  

compensated system becomes 
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where the open loop gain is  now 

K 3 i  = A g i Y p , ~ ,  \ 

The frequency response of t h i s  t ransfer  function, f o r  unity gain, 

is  plot ted i n  Figure 1 1  . 

40 
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CKAPTER V 

Analysis of the T o t a l  Loop Gain 

The open loop gain fo r  the compensated system expressed by 

Equation 47 i s  

where 

4 0  

Substi tuting these expressions i n t o  Equation 4% it czn be rewritten as 

' z  

- 4 9  - - V E k )  K; A \I; 3 
K3; 0 T t d 0  m, Qz 

For the  values given i n  previous chapters AD, K: 91 and y a r e  calculated as 

vE = 1 . 4 ~  S . M . S .  

\ =  

K' = 

Trd = 1.765 luz = 11.4 x t 0 - 4  hz 

2 - (&)', = I  

4 = 52.0 " 3 / ~ ~  

y = 3 . 4 4  x m 3  '/m 

These values a re  a function of  t he  construction of the instrument and w i l l  

be considered as open loop constants independent of the feedback path. 



The feedback gain, pi, is character is t ic  of the  l inear ized 

feedback path. I n  Chapter N three operating points were considered 

for  the l inearized closed loop (feedback) analysis.  

each operating point was a par t icular  gain Ki. 

Corresponding t o  

These were calculated as 

Hence, fo r  
K i  
AD 

o ; =  2 -  

8100 = \4 - 4  

8500 = 720.0 

The subscripts indicate the particular operating point. Corresponding 

t o  each Bi, there  i s  a l so  a particuiar ampiifier se t t ing  A i  f o r  tine 

forward loop. Hence the  open loop gain K i s  now reduced t o  a function 

of the par t icu lar  operating point on the nonlinear curve. 

3 i  
Substi tuting 

the above values in to  Equation 48 , the open loop gain is  wri t ten as 

"3 i = q % k , $ i  R k  
"3(1o) = Alo(O-OZ58) 

K3(loo) = Atoe (0.258) 

"3( 500 1 = Asso ( 1 z . q )  

The select ion of the  open loop gain sett ings r e su l t  i n  a compromise 

between s t a b i l i t y  and performance. 

s m a l l  i n  order t o  be safe with respect t o  s t a b i l i t y ,  h'ence, the servo 

i s  soft and not very accurate: or  the servo i s  s t i f fened by increasing 

The open loop gain i s  e i the r  chosen 
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the  gain in order t o  improve the s t a t i c  accuracy but a t  a lo s s  of 

s t a b i l i t y .  

As seen fron above, the  f i n a l  value of the  open loop gain i s  

controlled by the variable amplification fac tor  Ai. 

The analysis of the  open loop gain s h a l l  now be considered 

i n  t w o  parts. The first  part involves an analysis of t he  frequency 

response of the  system t o  determine the amplifier se t t ings .  The second 

part i s  a s t a b i l i t y  and performance synthesis on the dynamic response of 

the  system. 

A .  Frequency Response Analysis 

Figure 11 shows a frequency plot of the compensated closed 

loci! system for  m i t y  gala .  I n  Chq te r  V it was explained t h a t  the 

introduction of phase lead compensation would increase the s t a b i l i t y  and 

extend the frequency range of the or iginal  uncompensated system. By 

extending the frequency range i n  t h i s  manner, the  frequency a t  which the 

amplitude response could cross the  Oab l i n e  corresponding t o  a 4 5 O  phase 

margin w a s  increased. Now, with the  appropriate gain adjustment, the 

maximum frequency at  which a 4 5 O  phase margin can occur i s  1400 ‘/s 
, 

The gain required for  the amplitude plot  t o  cross the Oab l i n e  

at $ = 1400 = I s  is  the  open loop gain fo r  the compensated 

system. 

f i ca t ion  factor  Ai f o r  each operating point.  

f i rs t  expressing y5 X I  g; i n  decibel units. These values a re  then 

To f ind  t h i s  gain, it i s  f i r s t  necessary to evaluate the  ampli- 

This i s  accomplished by 

In, 



- 48 - 

added t o  the amplitude response curve shown i n  Figure I /  . This curve 

i s  presently plotted f o r  a unity g a i n  factor .  T h i s  procedure is  sketched 

i n  Figwe 16 

moved again such t h a t  it crosses the zero db l i n e  at  

represents the amplification Ai associated with each par t icu lar  operating 

E ,  b and c . ITOW , t.he v e r t i c a l  distance t h i s  p lo t  mi-i.st be 

140Q ‘is: 

point. 

are  

Table J. 

From Figure 16 it is seen that  the resul t ing amplifications 

A10 = 3,370-0 

AIOO = 337.0 

A500 = 6-4 

swnmarizes these resu l t s  and computes the  t o t a l  open loop 

gain f o r  each operating point. 

i s  87. 

s t a b i l i t y  requirements. 

The open loop gain for a l l  three cases 

This should be expected since each of the cases have ident ica l  

Hence, the  open loop t ransfer  function for t he  compensated 

closed system is wri t ten as 

€37 
GCS) H<S) = 

S‘ - + Z L  5 + I  
( 3 7 7 j a  ( 3 7 7 )  62.8 o 

5 0  

B. Dynamic Analysis 

A convenient means of synthesizing the dynamic response of a 

l i nea r  control system i s  by using analog simulation. Figure 17 represents 

t he  analog c i r cu i t  of the closed loop control system. 

The open loop t ransfer  function of t h i s  c i r cu i t  i s  given by Equation 50. 

Figure 17 l i s t s  the  potentiometer set t ings required t o  simulate the 
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exact dynamic response of the  system. The system i s  time scaled such 

t h a t  3 = 1 O O O t .  

Figure 19 shows the  time response of t h i s  system (Gain = 87) 

for a s t ep  input. Now as a rule, a good control system should be de- 

signed for 

1.2 e M M d  1 . 5  

where M the  resonance ra t io ,  i s  the maximum output t o  input r a t i o  of 

t h e  system when by a sinusoidal input. For a second order system, the 

m' 

resonance r a t i o  i s  a function of the  damping ra t io ,  5 .  This relat ion-  

sh ip  i s  given by Equation 5 I and i s  plotted i n  Figure 2 3 . 
I 

2 si-- t4w = 
51 

This functional dependence i s  a l so  observed from the  amplitude frequency 

response shown i n  Figure 1 1  for a second order system. 

For a second order system, the  time response t o  a s t ep  input 

is 

This response i s  plotted i n  Figure 18 for several  damping ra t ios .  

From t h i s  plot ,  it i s  observed tha t  there a l so  ex is t s  a relat ionship 

between the maximum response Y,, (or maximum overshot Yes(-)) and 5 

fo r  a s t e p  input. By different ia t ing Equation 7 2  and equating the 

equation t o  zero the  time, t,, at which Y- occurs i s  found t o  be 

-.ir 
t, = mfii* 

5.3 
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An expression.for Y- i s  obtained by subst i tut ing Equation 53 i n t o  

Equation 52 . 
TTT 

or 

54 

J-rr 
5 5  

This r e su l t  i s  plot ted i n  Figure 2 2 . For a good servo system, the  

maximum overshot for a s t ep  input should be 

0 . 2 0  c Y o s ( ~ \ x >  C 0.32 
This corresponds t o  a damping of 

Since the s tep  response of t h i s  system, shown i n  Figure 19 , 
resembles the s tep response of a second order system, it may be assumed 

t h a t  Equation 51 and 55 , as derived f o r  a second order system, can 

also be used t o  analyze the dynamic response of t h i s  system. 

From Figure 1s Yo,(-) = .575. Thus, based on the above 

r assumption, the  appropriate values of 

and 2 3 

not satisfy the s t a b i l i t y  requirements s t a t ed  above, it is necessary t o  

modify the  present system t o  obtain the desired response. 

and M,as taken from Figures L 2 

are  respectively 0.16 and 3.175. Since t h i s  time response does 

This i s  eas i ly  done on the  analog computer by varying the  systems 

t o t a l  loop gain. It i s  found tha t  a decrease i n  loop gain r e su l t s  i n  a 

decrease i n  

t o  206 respectively show the time response f o r  gain Settings of 87(3/4),. 

87( 1/2), 87( 1/4) and 87( 1/10). 

and consequently a decrease i n  5 and F\; Figures 2 0  4 

optimum s t a b i l i t y  and dynamic conditions 
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. -  

occur i n  Figure 2oC for  a loop gain o f  87(1/4). 

= .25 and from Figures 24- and 2 3 , 5 and NRare t o  be respectively 

For t h i s  response 

Yos (mx) 

0.40 and 1.38. 

Although decreasing the loop gain resu l t s  i n  the desired time 

response and improves dynamic s tab i l i ty ,  it reduces the s t a t i c  accuracy 

of the  system. The s t a t i c  or steady s t a t e  e r ror ,  e, of the system i s  

defined by the  f i n a l  value theorem as 

56 

where 

For RC5) = -!g 

reduces t o  

( s tep  input) the steady s t a t e  e r ro r  for t h i s  system 

58 

Thus, as the  low frequency or D.C. gain (loop gain) decreases, 

errors tend t o  predominate i n  the system as seen from Equation 5 8  . 
required t h a t  t h i s  control system operate with less than a 0.01 static e r ror .  

For the present gain of 87(1/4) the s t a t i c  e r ror  i s  0.046 and i s  consequently 

insuff ic ient  f o r  t he  desired accuracy of the system. 

It i s  

I n  order t o  improve the system performance, it i s  necessary t o  

The s t a t i c  e r ro r  can be decreased by a Increase the  low frequency gain. 

fac tor  "b" (i .e ., 1017 frequency o r  loop gain increased by b )  i f  a complex 

element having a value "b" at low frequencies and unity a t  high frequencies 

i s  introduced in to  the  system. It i s  important t ha t  the  phase and amplitude 
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character is t ics  of t h i s  element do not a f f ec t  the  resonance or  high 

frequency region of the  system because t h e  desired s t a b i l i t y  and optimum 

dynamic response have already been established f o r  these regions. 

An element t ha t  produces t h i s  type of control i s  cal led an 

" in tegra l  control lern or "phase lag compensator ." I t s  t ransfer  function 

with an addi t ional  gain, b, i s  expressed as 
b = -  U P  

a; 
a,= - 

9 2  

\ 59 

I w: = - b 2% 
The amplitude frequency response of t h i s  element i s  plotted i n  Figure I O  

for several  values of b. The frequency phase response f o r  a l a g  compen- 

sa tor  i s  the  negative of the  pha'se response f o r  a lead network. Hence, 

Figure ILb 

sidered negative and b = m. 

is  chosen such t h a t  W2= 

of t h i s  element does not a f fec t  t he  resonance region of the system. By 

choosing b = 4 and consequently &.  = 31..1>s the  t o t a l  loop gain of the  system 

is again equal t o  87. 

i s  applicable t o  a lag element i f  the  phase angles a re  con- 
I 

The time constant of t h i s  lag network, T, , 
= Ii:5,6*4in order t h a t  the  phase lag character is t ic  

32 

The dynadc response of t h i s  system i s  shcvn i n  Figure A/ o. 

As b increases or w2' decreases, the  amount of low frequency 

gain amplification increases. 

dynamic response of the system fo r  values of b = 4, 8, 10, and 16 o r  

6 ' = 31.4, /Z7> 12.56, and7.85rad/sec. 

Figures 2 I a t o  2 I d respectively show the 

An analysis  of these plots  shows t h a t  

Figure 21 d 

b = 16 and consequently the low frequency gain or open loop gain of the 

represents the optimum s ta te  of the system. For t h i s  response 
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system i s  equal t o  (87/4)(16) = 348. 

of .00288 which meets the performance specification of the system. 

This resu l t s  i n  a s t a t i c  e r ror  

Thus, the  closed loop system has been designed f o r  optimum 

dynamic s t a b i l i t y  and performance character is t ics .  The f i n a l  form of 

the  open loop t r ans fe r  function fo r  the system i s  wri t ten as 

The open frequency response of t h i s  system i s  plotted i n  Figure 24. 

The dynamic o r  time response of t he  closed loop system t o  a s tep  input 

i s  shown i n  Figure 214. 

I n  summary, a closed loop capacitive type low pressure t rans-  

ducer has been theore t ica l ly  designed having the following character is t ics  

Radial tension i n  the membrane 

Natural frequency of the diaphragm 

Closed loop damping r a t i o  

Resonance r a t i o  

Maximum overshot; Y 

Accuracy 

Fre quenc y 

Open loop gain 

%I 

os(=> 

0.10 'bh, 

60 '/5 

0.40 

1.38 

0.25 per c e e ~  

0.003 

l 0 ~ O C f s  

348 
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(XAF'TER VI 

Experiments 

The purpose of the experiments i s  t o  ver i fy  the  theore t ica l  

resu l t s  obtained in the  previous chapters. A closed loop capacitive pres- 

sure transducer u t i l i z ing  a weakly stressed membrane has been constructed. 

ExErimental  Set -UD 

The forward loop section o f t h e  system consists of the capaci- 

t i v e  pressure transducer and the  bridge network as outlined i n  Chapter 11. 

The uncompensated closed loop experimental system is schematically shown 

i n  Figure 32. As seen frorn.th5-s figure, the  A.C. e r ro r  s igna l  from the 

bridge i s  applied t o  an i so la t ion  amplifier and an A.C. amplifier which 

has a combined gain of about 15. 

In t he  phase sensi t ive detector, the amplified e r ro r  s igna l  from 

A s  shown in the figure,  t he  bridge i s  compared with the reference signal.  

the  reference s igna l  i s  derived from the bridge exci ta t ion source. 

un i t  y ie lds  a D.C. output voltage proportional t o  i t s  amplified A.C. input. 

The polar i ty  of the  D.C. output voltage i s  determined by the phase relat ion-  

sh ip  between the e r ro r  s ignal  and the  reference voltage. 

is then amplified and fed back t o  the  transducer. 

This 

This D.C. voltage 

The cathode followers shown i n  t he  system are  used fo r  impedance 

matching. 

determiies the  operating point f o r  l o c a l  l inear izat ion of the systen; as 

Furthermore, each electrode has a D.C. b ias  of 150 volts ,  t ha t  

explained in Chapter 111. 
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I .  

Open Loop Experiments 

Several clamped c i rcu lar  diaphragms were constructed which had 

I natura l  frequencies i n  t'ne order of  50 t o  100 c / s .  Figure 33. sh0i.x a 

typ ica l  dynamic response for  the open loop pressure transducers. The closed 

loop experiments u t i l i zed  a diaphragm which had a na tura l  frequency of 

approx-tely 100 c/s. 
I 

I 
I Each element i n  the loop was designed t o  have a s m a l l  time constant 

Experimental System 

as compared to t he  time constant of the diaphragm. The r ipple  from the 

r ec t i f i ed  exci ta t ion voltage of 20 kc/s w a s  f i l t e r e d  out by se t t ing  the 

break frequency of the detector at 1000 c/s and the break frequency of the 

two D.C. amplifiers at 10 kc/s. 

This closed loop system w a s  found t o  be s table  f o r  a gain l e s s  

than 0.2. However, at 0.2 the system osc i l la ted  at  a frequency of 5 kc/s 

which corresponded t o  the  time constant of the  capacitive bridge c i r c u i t .  

A t  t h i s  gain, t he  closed loop system worked as an R.C. osc i l l a to r  and osc i l -  

l a ted  a t  i ts  na tura l  frequency of 5 kc/s. To ver i fy  tha t  t h i s  was due t o  an 

e l e c t r i c a l  time constant and not t o  a mechanical time constant, the  variable 

capacitors of the  pressure transducers were replaced by two fixed capacitors. 

It w a s  found t h a t  t h i s  system a l so  osci l la ted at  about 5 kc/s. 

To reduce the  open loop gain at 5 kc/s, the break frequency of 

t he  two D.C. amplifiers were a l s o  set at  1000 c/s . 

The block diagram fo r  t h i s  experimental system i s  shown i n  Fi-gure 

15. Dynamic t e s t s  were performed on t h i s  system by excit ing the diaphragm 
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with an e l e c t r i c a l  s t ep  of 8 vol ts  (or  equivalently 0.4 microns). 

system was found t o  be s table  f o r  gains of l e s s  than 2 .  

gain of approximately 2, the system osci l la ted at about 160 c / s .  

resu l t  was confirmed from the  plot of the  frequency response of t h i s  

system, due t o  the e l e c t r i c a l  construction of the bridge c i r c u i t .  

The 

However, at  a 

This 

However, the  resu l t s  of t h i s  experimeEt ver i f ied  the philosophy 

The block of t he  previous chapters and a new bridge system was designed. 

I 
. diagram of t h i s  system i s  shown in  Figure 32.  

Basically, i n  t h i s  system one side of the capacitor transducer 

i s  used as the  measuring element. 

back s ide.  

The other side i s  used as t h e  feed- 

In t h i s  manner, the measuring element and feedback element 

were mechanically separated. 

dofie by applying a pressure s tep  input t o  one side of the transducer 

(with both sides of the diaphragm at atmospheric pressure). 

loop frequency response was measuredby the r i s e  time of the  closed loop 

system. 

gain w a s  s e t  a t  10. 

Testing the closed frequency response was 

The closed 

Figure 33 gives an example of the  response when the open loop 
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I n  th i s  report, it was found t h a t  t h e  frequency of a menibrane 

i s  d i r ec t ly  proportional t o  the  square root  of i t s  r ad ia l  tension while 

i t s  sens i t i v i ty  is  inversely proportional t o  i t s  tension. Hence, it i s  

concluded t h a t  i n  designing a capacitive pressure transducer fo r  an open 

loop system, one i s  faced with a "sensitivity-frequency response" d i l e m  . 
The open loop analysis showed t h a t  i f  a capacitive pressure transducer 

u t i l i z e s  a highly s t ressed diaphragm as i t s  sensing element, the system 

w i l l  have a high frequency response but a low pressure sens i t i v i ty .  

While on the  other hand, i f  a high frequency response is  not required, 

t he  system can be made very sensi t ive t o  low pressure by u t i l i z i n g  a 

weakly s t ressed  diaphragm. 

Furthermore, it w a s  found tha t  regardless of haw the  diaphragm 

w a s  s t ressed,  t h e  performance of the open loop system w a s  dependent upon 

i t s  mechanical properties.  This resul ted i n  a l imited range of l i n e a r i t y  

for the system and required the  monitoring of other parameters such as 

t empra tu re  changes i n  order t o  determine t h e i r  influence on charac te r i s t ics  

of the diaphragm and if necessary provide a correction fac tor  because of 

t h e i r  e f f ec t s .  

It w a s  theore t ica l ly  and experimentally established i n  t h i s  

report  t h a t  by employing a weakly stressed diaphragm i n  a feedback 

system, t h e  system's performance could be made independent of t h e  mechanical 

propert ies  of t he  diaphragm. 
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A closed loop system w a s  designed i n  which the  amplified and 

r ec t i f i ed  transducer output voltage was fed back t o  the high pressure 

side of t h e  diaphragm. T h i s  created an  e l ec t ros t a t i c  force of a t t r ac t ion  

which opposed t h e  pressure force on the diaphragm, thus nulling t h e  dia- 

phragm. The e f f ec t  of these two opposing forces acting on the diaphragm 

e l e c t r i c a l l y  s t i f fened  t h e  diaphragm. Furthermore, it was foun6 t h a t  

by having a high loop gain, t he  weak spring constant of t h e  low stressed 

diaphragm i s  replaced by a s t i f f e r  "e lec t r ica l  spring." 

concluded t h a t  by employing a weakly stressed diaphragm i n  a closed loop 

Hence, it i s  

system, t h e  mechanical "spring" properties of t he  diaphragm are elec-  

t r i c a l l y  eliminated. Furthermore, it was found t h a t  by closing the loop, 

the  frequency of the system increased as the square root of one plus 

the  loop gain while t he  damping f o r  the system decreased by the  same 

fac tor .  

Table 3 gives a comparison of t he  properties of an open loop 

highly s t ressed  diaphragm and a closed loop low stressed diaphragm. 

general, t h e  properties of both systems are  ident ica l .  The difference 

between t h e  two systems i s  i n  t h e  measurement range. For the upper 

measurement range, fo r  example mm Hg t o  atmospheric pressure, the 

open loop measuring system i s  c lear ly  preferable over the  closed loop 

measuring system (less complicated) . For the  lower measurement range 

(say lower than 

system w i l l  start t o  have an advantage over t he  open loop measuring 

system. The open loop sens i t i v i ty  of a weakly s t ressed diaphragm can 

be made la rger  than t h a t  of a strongly s t ressed diaphragm; consequently, 

I n  

mm Hg pressure), t h e  closed loop pressure measuring 



- 59 - 

t h e  resolution of a closed loop measuring system can be improved 

compared t o  tha t  of the  open loop pressure measuring system. 

I n  conclusion, t h e  closed loop diaphragm pressure transducer 

should be used for the  lower end of the pressure measurement range, or 

i n  t h e  case when a b e t t e r  resolution is desired i n  the  lower end of t h e  

pressure measurement range. 
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APPENDIX A 

AI\EALYsIs OF DIAPHRAGMS 

A l .  Membranes - Equation of Motion of a Circular Membrane 

Surfaces whose s t i f fnes s  i s  negl igible  compared with the r e -  

s tor ing forces due t o  tension a re  called membranes. 

membrane i s  assumed to be a perfectly f lex ib le ,  uniform and i n f i n i t e s i -  

The theo re t i ca l  

m a l l y  t h i n  so l id  lamina s t re tched i n  a l l  direct ions by a force which is  

unaffected by the  motion of the membrane. It can be looked upon as a two 

dimensional generalization of a s t r ing .  

Before formulating the  equations of motion of a c i rcu lar ly  

clamped membrane, it i s  expedient t o  make the  following assumptions t o  

simplify the analysis:  

a )  Vibration occurs " in  vacuo." 

b )  

c )  

There i s  absence of l o s s  (no in t e rna l  or external  damping). 

The system i s  e l a s t i c  and i t s  force-displacement character is-  

t i c s  a r e  l i nea r .  

The maximum displacement i s  s m a l l .  

Deformation due t o  gravity i s  negl igible .  

The c i r cu la r  membrane vibrates  with c i r cu la r  symmetry. 

a) 

e )  

f) 

Consider an element of area dS = rdrd9 of t he  membrane i n  Figure 26, 

The r a d i a l  force act ing across the arc rde is  given by dF, = Trd0 where T 

is t h e  tension i n  newtons per meter of length. The v e r t i c a l  component 

dF of this force i s  
Y 

d ?  =T r  de SIN 4 A-  I 
and by assumption d 
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or  

dFV= T r a d e  = ~ d @ [ r X ]  
a r  ar 

The ne t  v e r t i c a l  force acting upon 

A-2 

the  surface element rdrd9 

due t o  tension pa ra l l e l  t o  the  radius i s  

Similarly, t he  net  force i n  the  y direct ion due t o  tension gerpendicular 

t o  the radius i s  given by 

A - 4  

However, since y i s  not a function of 8 f o r  t he  case of c i r cu la r  symmetry, 

t h i s  force i s  zero. 

The net  force on the  element m u s t  equal i t s  mass, mrdrde, (where 

m i s  5.n uni t s  of mass per uni t  area) times i t s  acceleration. 

equating forces 

Thus, by 

and 
A - 5  . 

where 

i s  t h e  Laplacian operator i n  polar form f o r  a function having c i r cu la r  
(m 

symmetry. NOW l e t t i n g  d, = ‘L t he  dynamic equation of motion becomes \;m 
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A2. Undamped Natural Frequency o f  a Clmped, Circular Membrane 

A solut ion f o r  equation (p) can be obtained by assuming t h a t  

A -1 

where 'Q = V ( r )  is  a function of the radius and w i s  the  frequency of t he  

mode. Substi tuting i n t o  equation (L-G), a second order ordinary d i f f e r e n t i a l  

equation is  obtained, characterizing the  motion of t he  menibrane. 

where 

Equation (A-s) i s  a par t icu lar  form of Bessel's d i f f e r e n t i a l  equation whose 

complete solut ion with two arb i t ra ry  constants i s  of t h e  form 

or 

where J , ( K r )  i s  t h e  

Axo(Kr) +- 8 Y, ( k r\] eJwt A-99 

Bessel function of t h e  f i r s t  kind and of zero order 

and Y,(Kr) is  a Bessel function of the second kind and zero order. 

I n  par t icular ,  the  analysis i s  of a c i rcu lar ly  clamped membrane 

with t h e  following boundary conditions 

i) Q = T ~  a t  r = O  

ii) Q = O  et r = ~  
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A t  t h e  center, where r = 0, Y o ( K r )  is  undefined by v i r tue  of 

i t s  s ingular i ty .  From i t s  se r i e s  form it can 

beseen t h a t  it becomes i n f i n i t e  a t  r = 0 and hence will not s a t i s f y  

equation ( A - 9 )  under condition (i) unless B = 0. 

Now J o ( K r )  can a l so  be represented i n  ser ies  form as 

or 

Hence, at  r = 0 Jo(0) = 1 . Therefore, from (i) A = vo and. t he  solut ion 

A-  I D  

A-loa  

From condition (ii) and equation (Avo) is obtained an equation fo r  t h e  fre- 

quency of a vibrat ing membrane 

S o  (ka) = o A-I2 

Thus, K a  must always s a t i s f y  t h i s  equation; i .e . ,  it must be a zero of 

t h i s  Bessel function. 

wave; hence, t he re  exists an i n f i n i t e  number of  roots t o  equation 612) which 

occur a t  K a -  2.405, 5.52, 8.654 ..... 

The p lo t  of t h i s  function resembles a damped cosine 

Thus, t h e  frequency of t he  funda- 

ment a1 mode becomes 

K s  = 2.405 

A- I3 
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A3. Damped Vibration of a Membrane 

I n  order t o  make the  discussion of t he  c i r cu la r  membrane more 

r e a l i s t i c ,  it i s  necessary t o  consider t he  e f f ec t s  of damping forces on 

t h e  system. These forces include an in t e rna l  f r i c t iona l ,  t he  forces 

resul t ing from the  radiation of energy i n  t h e  form of sound waves and 

t o  the  viscous damping of the  surrounding medium. 

Assume t h a t  the  damping force per unit  area (damping pressure 

P ) i s  proportional t o  i t s  veloci ty  r 

' A- 14 

where R , i s  a damping constant independent of r and y, but dependent upon 

frequency. 

t he  o r ig ina l  equation of motion. 

The introduction of t h i s  damping force in to  the  system a l t e r s  

Equation 6 - 6 )  now becomes 

Again assuming harmonic motion 

a second order d i f f e r e n t i a l  equation i s  obtained of t h e  form 

where y, must satisf 'y t he  equation 
2 2  Y,'++ ?(1+ K d, =o 

A- 15 

A -  17 

A - 1 8  

Equation (A-17) is ident ica l  with equation (4; therefore , i t s  solution, as 

before, i s  A Jo(Kr). The same boundary condition a l so  holds; thus, once 

again, t h e  equation J 0 ( K a )  = 0 i s  sa t i s f i ed  by the  same previously deter-  

mined values of KQ, i.e., KO. = 2.405, 5.520 .... 

For damped vibrat ions , however, t'ne allowed frequencies a r e  not 

but instead are  determined by the imaginary part of y .  given by WnM = 
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Solving equation @), y, i s  expressed as 

The general  solut ion of equation (p$ is now 
R+ 

where 

2.405 The fundamental frequency i s  obtained by se t t i ng  K = ~ . 
CL 

A-I9 

A- 20 

A-2 I 

A- 22 

Thus, it i s  concluded t h a t  t he  amplitude of vibrat ion of the  membrane is  

exponentially damped and t h a t  the  frequency of o sc i l l a t ion  is  s l igh t ly  

less than f o r  the  corresponding undamped case. 

Ab. Thin P la te  

A st retched diaphragm i n  which the restor ing force i s  due en t i re ly  

t o  i t s  s t i f fnes s ,  as opposed t o  tension, i s  ca l led  a t h i n  p la te .  Theoreti- 

cal ly ,  a t h i n  p la te  consis ts  of a perfectly e l a s t i c ,  homogeneous material 

t h a t  has a uniform thickness considered s m a l l  i n  comparison t o  i t s  other 

dimensions. 

The analysis of the t h i n  plate w i l l  be l imited t o  t h e  symmetrical 

The assumptions, as previously vibrat ions of a clamped c i rcu lar  diaphragm. 

Stated fo r  a membrane, w i l l  a l s o  be va l id  f o r  t h e  t h i n  p la te .  

The mathematical derivation of the equation of  motion of a t h i n  

p l a t e  i s  more involved than t h a t  for a membrane. 

development w i l l  not be present here, bu t  merely t'ne resul t ing equations 

w i l l  be  s ta ted .  

Therefore, a rigorous 

The s teps  i n  formulating t h i s  equation as w e l l  as others 
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used i n  the discussion of the diaphragm can be found i n  the t r e a t i s e  

by Rayleigh (Reference 8 ). 

As taken frm the above reference, the equation of motion of 

a t h i n  plate  is: 

where 

A-23  

E = Young 'S Modul~s  

h = thickness 

p = volume density = 

6 = Poisson's Ratio 

mass 
u n i t  vol .  

Again t h e  assumption i s  made tha t  the motion i n  any mode i s  harmonic as 

described by equation (A-7) 

y(r,t) = qcr\ eJWt 

Substi tuting t h i s  expression into equation @23), t'ne equation becomes 

or 

Expressing in .  operator form, the d i f f e ren t i a l  equation becomes 

Now t h e  l inear  operator i s  commutative; thus, equation VI-24) can be 

factored giving 

or 

A - 2 4  

A-24 a 

2 
Therefore, 7\ can be a solution of  e i ther  (or  f <)7\ = 0 or  (or2 - <)TJ = 0. 



The complete solut ion of equation (A-25) i s  the  sum of these 

two solut ions.  Noting t h a t  t he  f i r s t  of these equations i s  iden t i ca l  

i n  form with equation @ 8 ) ,  i t s  solution w i l l  a l s o  be the  same, namely, 

y= A 3 d  usr A- 26  

The solut ion of t h e  second equation is obtained from the  f i rs t  by re -  

placing K by jK and i s  wri t ten as 

r\ = S J o ( , j ~ , v )  
or  

q = B I , ( K Z )  

which is the  so-called hyperbolic Bessel function whose independent 

A - 2 7  

variable has imaginary values.  Thus, the solut ion of equation ( A - 2 5 )  

A - 2 8  

Since equation (A.8) only contains two,  ra ther  than four a rb i t r a ry  constants, 

it i s  not  t he  complete solution of the d i f f e r e n t i a l  equation. 

with t h e  membrane, t he  remaining constants are zero by t h e  condition t h a t  

at r = 0 the  amplitude of vibrat ion must remain f i n i t e .  

B u t ,  as 

To evaluate t h e  constants, A and B, two boundary conditions are 

necessary. Again considering the case of a r ig id ly  clamped diaphragm, 

the  following two coaditions f o r  a th in  p l a t e  are obtained 

i) a t r = a  ; I = O  

5 -  ‘7 - slope = o ii) a t  r = Q ; 

When the first of these conditions is applied t o  equation 6 - 2 8 >  the  follow- 

ing r e l a t ion  is  obtained 

A-29 
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and applying t h e  second condition t o  t h e  equation 

but s inc e 

A - 3 0  

t h e  equation (A-So) takes  the  form 

Rearranging terms i n  equations (9-29,A-304 and dividing one by the  other, 

a frequency equat ion . i s  obtained which must be s a t i s f i e d  by par t icu lar  

values of K a  for a solut ion t o  ex is t .  

Now since both t h e  Bessel functions Io and It are posit ive f o r  a l l  values 

of Kcl, a solut ion occurs only when J, and J ,  are of opposite s ign.  

From a t ab le  of Bessel functions, it can be seen t h a t  the  equation i s  

sat is  f i ed  by 

K A  = 3.20 > 6.30 , 3.44 , ., . . . 
3 

or approximately by 

or 

where upon se t t i ng  K,= 3.20 the fundamental frequency i s  given by 

A - 3 2  

A-33 
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A5. General Case: Graphical Solution fo r  the Fundamental na tura l  

Frequency of a Stretched, Circular, Clamped Fla t  Diaphragm 

Experiments show t h a t ,  although membranes and th in  plates  ex i s t  

i n  theory, they a re  not eas i ly  achieved i n  pract ice .  

i s  extremely t h i n  or stretched very t igh t ly ,  deviations occur from the 

Unless a diaphragm 

theore t ica l  resu l t s  calculated f o r  membranes due t o  the inherent s t i f f -  

ness of the material  of the  diaphragm. For t h i s  reason, a general case 

must be considered which takes in to  account restoring forces i n  the dia- 

phragm due t o  both tension and s t i f fness .  

Once again, the derivation of the equations of motion fo r  t h i s  

general  case is  quite complicated and thus w i l l  not be included here. 

The equation of motion as taken from Reference 7 is:  

A - 3 4  

where P i s  now a t raverse  pressure o r  a resul tant  disturbing force on the  

diaphragm and t h e  added term T t o  Young’s modulus occurs because the added 

tension increases the  e f fec t ive  modulus. 

i s  assumed and thus no var ia t ion w i l l  occur when 0, the  polar angle, is  

Again, a symmetrical condition 

. varied.  

If a harmonic motion is assumed in a l l  modes, i .e . ,  y ( . - . t ) = ~ ( r ) e ’ ~ ’ ~  

equation 6-34)  can be wri t ten as 

A-3.la 
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Note t h a t  from t h i s  general equation, the equation of motion f o r  a 

stretched membrane can be obtained by l e t t i n g  h + 0 and s imilar ly  by 

l e t t i n g  T -, 0, aii& the eqi-ation of m o t i a i i  of an -&-,stretched t h h  plate  

is  obtained. 

As previously seen, due t o  the boundary condition t h a t  the 

center deflection of the  diaphragm i s  f i n i t e ,  Bessel functions o f t h e  

second kind a r e  not permissible. 

t he  four a rb i t ra ry  constants needed t o  solve equation ( A - 3 4 4 ) .  

This condition thus eliminates two of 

A solution 

of (A-34a) then is  of the  form 

I 
where K 1  and Q s a t i s f y  the equation 

l e t t i n g  

t h e  two solutions are  

A- 35 

A-36 

A - 3 7  

A - 3 8  

Subst i tut ing equations (A--37, 4-38) into equation (A-35) and using the con- 

d i t i o n  fo r  a clamped diaphragm t h a t  ?I = - '7 = 
d r  

t h e  constants A and B, Mason (Reference 7 ) obtained the  following 

0 when r = a t o  evaluate 

expression for displacement of the diaphragm: 

A-39 
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where 

Now theoret ical ly  at  a undamped natural frequency % the  center deflection 

of the  diaphragm becomes i n f i n i t e .  Applying t h i s  theore t ica l  condition t o  

equation 6-39>, it i s  seen tha t  f o r  the equation t o  be sa t i s f ied ,  the  follow- 

ing condition must hold 

50 ( K 1 W L - r - l  ( K A )  + u S l ( K , ~ \ I ~ ~ L a ~  = 0 A - 4 0  

If x = K Q and z = I$& the  frequency equation ( A - 4 0 )  takes the  form 1 

A-  41 

To f ind values of x and z t o  s a t i s0  equation ( A - 4 1  ), a plot i s  made of 

- JO vs x as shown i n  Figure 27.  Also plotted i n  t h i s  f igure a re  
-1 

vs z. One plot corresponds t o  x = z and the other 
Io (4 
= p J  two p1nt.s of 

to x = 0.12. 

,satis* equation (A -4 .1 )  fo r  the  particular cases where 2 = 1 and 

The intersect ion of t h e  curves gives values of x and z which 

X = 0.1. 
Z 

values of x Jo ( X I  Io (4 
-1 and W )  Thus, from a cross plot of 

and z sat isfying equation ( A - 4 1  ) can be found fo r  various r a t io s  of x t o  z. 

The r a t i o  - i n  expanded form i s  X 
z 

A - 4 2  

Now t h e  general case under study is  of a diaphragm whose character is t ic  

i s  between a theore t ica l  membrane at one extreme and a th in  plate  as the 

other extreme. 

necessary t o  consider. 

This thus s e t s  limits on the values of 5 which are 
z 

For a membrane (no bending s t i f fnes s )  c, = 0 and 
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X 

Z Z 
one l i m i t  i s  5 = 0 while fo r  a t h i n  plate (no tension) d, = 0 and - = 1. 

Hence, it can be seen from Figure 27 tha t ,  at  the  fundamental na tura l  

frequency, x is  l imited i n  value t o  the range from x = 2.405 (E = 0 and 

z = m) t o  x = z = 3 -196. Table 2. gives values of x and z from expanded 

t h i s  range. 

I n  order t o  graphically find the fundamental na tura l  frequency, 

another plot  i s  required. From previously defined expressions for  x and z 

Che following equations a re  obtained 

I- 
and 

hence 

r 

A-43  

Subst i tut ing the  previously def,,?ed values of c, and 1 

A - 4 4  

i n t  0 equations (A-43) 

A - 4 5  

A - 4 6  
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Table 2 
f o r  various values of x and z within our  range of i n t e r e s t .  Figure 28 

shows a p lo t  of equation (A-45) plot ted against  equation ( A - 4 G j  for t h e i r  

respective values given i n  Table A - 1 .  

i s  a graphical solution of equation (A-34) f o r  the  fundamental na tura l  

frequency of any c i rcu lar ,  clamped, f l a t  diaphragm under r ad ia l  tension. 

a l s o  contains tabulated values of expressions ( 4 - 6  ) and (A -46 )  

Hence, t he  p lo t  shown i n  Figure 25,8 

Summary: Steps t o  follow in' using the  graphical  method (Reference ). 

2 

m (E+T ) h2 
1) Calculate QT vP(1-2 )  (equation A - 4 5 )  

from t h e  i n i t i a l  tension and the diaphragm constants. 

2) With the  value calculated i n  s t e p  (1) , obtain the  value of 

2a2 con0 \I= o ( l - O  (equation A - 4 6 )  from t.he graphical 
h 

solut ion plot ted i n  Figure 2 8  

3 p 0 - 0  1 . 3 )  Calculate - h 

4) Divide the  value obtained i n  s t ep  (2)  by the value obtained 

i n  s t ep  (3) t o  obtain t h e  fundamental na tura l  frequency of 

t h e  diaphragm. 
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A6. S t a t i c  Deflection of a Diaphragm 

Equation 6-1-47) gives an expression f o r  t he  displacement, 7 ,  

of a dTaphram with tension and st.iffr?ess. 

quantity, as or ig ina l ly  assumed, then the  expression 

If ?? i s  t r ea t ed  as a s m a l l  

f o r  the  displace- 

ment as given i n  Reference (7 ), is reduced t o  

P 
?"r 

I n  t h e  case of a t h i n  p l a t e  T -.) 0 and t h e  s t a t i c  def lect ion becomes 

A-47 

I n  t h e  case of a t h e o r e t i c a l  membrane, h -+ 0 o r  t he  na tu ra l  s t i f f n e s s  i s  

qui te  s m a l l  compared t o  the tension; t he  amplitude of v ibra t ion  i s  

This equation may be wr i t ten  as 

Note t h a t  the  center  def lect ion a t  r = 0 i s  expressed as 

A - 4 3  

A -  51 



A-16 

Therefore, equation @ S O )  can be writ ten i n  f i n a l  form as 

A plot of t h i s  relationship i s  shown i n  Figure 2 9. 

A - 5 2  
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APPENDIX B 

ACOLTSTICAL SYSTEM 

Hehhoi tz  Resonator 

I n  acoustics, t he  term resonator has cone t o  mean a simple 

vibrat ing system consisting of a compressible f lu id  contained i n  a 

r i g i d  enclosure communicating with the external  medium through an 

aperture of r e s t r i c t ed  a rea .  

The theory of resonators has been developed i n  d e t a i l  by Helmholtz, 

for whom they are named after, but only a simplified treatment w i l l  be 

presented here.  Figure 2 Sshows two simple Helmholtz resonators. The 

exact form of the  resonator is  unimportant as long as the  smallest dimen- 

s ion i s  considerably la rger  than t h e  dimension of the aperture.  A simple 

r e sma to r ,  as descri5ed abcwe, i s  amlogels  t o  t h a t  of a mechanical system 

with one degree of freedom having lumped mechanical elements of mass, 

s t i f f n e s s  and resis tance.  

This analogy provides the simplest physical in te rpre ta t ion  of t h e  system. 

I n  Helmholtz's as w e l l  as Rayleigh's (Reference 8 ) development of t he  

theory of such a resonator, t he  gas in  t h e  aperture i s  considered t o  pove 

(It i s  a l so  analogous t o - a  series RCL c i r c u i t . )  

as a u n i t  and provides the  nass element of t h e  system. The motion of t he  

gas i n  the  aperture a c t s  l i k e  a reciprocating piston compressing and 

r a r i o i n g  the  air contained i n  the cavity. The inf lux and ef f lux  of gas 

through t h e  aperture provides the  s t i f fnes s  element ( i . e . ,  t h e  s t i f f n e s s  

i s  due t o  t h e  volumetric compression, s, = - 
The res i s tance  element i s  provided by the  radiat ion of energy in to  t h e  

within the  cavi ty) .  T '  

surrounding medium (dependent upon the cross sec t iona l  area of aper ture)  

and by the  d iss ipa t ion  of energy due t o  viscous damping (dependent on 

t h e  length of t he  aperture,  i . e  ., ef fec ts  of  tubing).  
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Before proceeding fur ther  with' the  analysis of the acoustic 

system, the  following assumptions must be stated: 

Assumptions 

i) 

ii) 

iii) 

iv )  

AS 

The wave length, h ,  of the  vibrat ion of f ree  a i r  i s  large 

compared with the  dimension of the  cavity.  This implies 

t ha t  a t  any instant ,  the condensation w i l l  be uniform 

throughout the  cavity.  

Adiabatic compression 

Uniform volume flow 

The tube length (aperture) must be suf f ic ien t ly  short so 

t h a t  t he  dead time $/c can be neglected. 

nreviously r- s tz ted,  t he  resistance element i s  a function of 

t he  dimension of the aperture and on t h i s  basis ,  the analysis w i l l  be 

car r ied  out i n  two par ts .  

I. The first case t o  be considered is  tha t  i n  which the length 

Of t he  aperture i s  negligible compared t o  i t s  diameter. This case i s  

shown i n  Figure zsa. The motion i n  the  system i s  mainly confined t o  , 

t he  air in the aperture (or neck). If the  cross-sectional area and 

length of the  aperture a re  S and 1 respectively, and p i n  the  density 

(mass/vol) of the gas i n  the neck, then the mass of air  i n  the neck i s  

p a S. 

t h a t  the  acceleration force i s  given as fa = ( p  R S)q, where 7)  is  the 

displacement of the u n i t  air mass. The s t i f fnes s  force or excess pressure 

A force balance carried out on the a i r  i n  tk aperture shows 
.. 

t h a t  r e su l t s  when a volume of gas ,  dV = ST, flows through the  aperture . 
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i s  developed as follows: 

The bulk modulus of e l a s t i c i ty ,  B, of a f lu id  i s  defined 

as the  negative of the  r a t i o  of the incremental pressure 

dP t o  the s t r a i n  dV/V. 

or 

where s, i s  the condensation equal t o  - dV/Vo. Now the general 

def in i t ion  of incremental pressure dP i s  ident ica l  with the 

acoustic def ini t ion of excess pressure, p. Hence 

p = AP 

subst i tut ing for s 

and 
z 

P =  - c p  - S? \J 

Therefore, the result ing s t i f fness  force acting on the  mass 

i s  given by 

The r e s i s t i ve  force fo r  t h i s  case i s  due only t o  the radiation 

Of energy and i s  given by Rayleigh (Reference 8 ) as 
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Summing forces the  complete equation of motion i s  obtained 

S a  + f R  * S S  = Sd 
6-3 

where S P ejwt i s  an externally applied force and P i s  i t s  pressure 

amplitude. Thus, it i s  seen t h a t  t h i s  acoust ical  system can be described 

by a second order l inear  d i f f e ren t i a l  equation with an undamped na tura l  

(or  fundamental) frequency of 

and a damping r a t i o  (due t o  radiation) equal t o  

0-4 

6 -  5 

Now i n  an ac tua l  resonator t h i s  damping term i s  very s m a l l  and has l i t t l e  

e f fec t  on the vibration of the system. Thus, it can be assumed t h a t  the 

damped and undamped na tura l  frequencies a re  approximately the same. 

11. I n  the  second case t o  be considered, the length of the 

aperture i s  comparable or larger  than i t s  diameter. This case takes in to  

account the  e f fec ts  of a long length of tubing connected t o  the  resonator, 

thus extending the length of the aperture. 

type is  shown i n  Figure ( 25A ) . 
A simple resonator of t h i s  

The analysis i n  t h i s  case w i l l  t r e a t  

t h e  system as a pneumatic system. Thus, it w i l l b e  necessary t o  define 

a new s e t  of terms. The objective of the  treatment of t h i s  case i s  t o  

a r r ive  at a t ransfer  function (Pc/Pd) fo r  the system. 

Resistance - R: The resistance i n  the system f o r  t h i s  present 

case i s  assumed t o  be due only t o  the resistance offered t o  the  motion 

Of t he  viscous f lu id  i n  the tubing. The pressure drop, P,, i n  the tube 
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due t o  flow resistance i s  given by the Hagen-Poiseuille L a w  as: 

where the pneumatic resistance coeff ic ient  is  defined as  

8 u  k 
R=TTr ,4  

hence 

6 - 6  

P t =  R Q  6-7  

The value of R var ies  w i t h  absolute viscosi ty  which i s  assumed 

t o  be essent ia l ly  constant f o r  small temperature and pressure 

change. The relationship only holds f o r  laminar flow. 

Capacitance - C: Pneumatic capacitance i s  defined'as the t ine 

in t eg ra l  of the volumetric flow into a vesse l  divided by i t s  in te rna l  

pressure. Star t ing fro= a special  form of the general gas ecpation 

(equation E-$), a value for  the capacitance of' the  system presently 

under study can be formulated as follows: 

c =  - -  dV 8-8  

Now the volume flow in to  the cavity or  reservoir i s  eqaal t o  

d C  

the  decrease in volume of t he  gas original ly  i n  the cavity; 

hence, 

theref  ore 

6-9 

Assuming adiabatic compression in the cavity 



di f fe ren t ia t ing  

Substi tuting t h i s  relationship i n t o  equation ( 8 - 8  ) a value 

f o r  ccpacity is obtained 

and hence equation ( B - 9  ) becomes 

Inertance - J: I f  the motion of the f l u i d  i s  assumed t o  be 

confined t o  the  tubing then the  accelerating force on the mass element, 

p S A ,  i n  the tubing i s  given as 

W3 = ( p S 8 ) a  
where P 

and may be writ ten as 

is  the pressure drop necessary t o  accelerate the f lu id  J 

Now "a", the  acceleration of the  f l u i d  i n  the  tube, can be 

expressed pneumatically as .. 
Q 
S a = . -  

hence 

0- 13 

B -  14 

or  

P,= 3 Q  



where the  inertance (J)  of the system i s  defined from equation 

( B - I + )  as 
A Q  T =  - s 

8-  15 

This term is  proportional t o  t he  density of t h e  f l u i d  and fo r  

s m a l l  pressure changes, it is e s sen t i a l ly  constant ,  

Thus, having defined the  terms necessary to work with, an equation 

of motion can be obtained f o r  the  system by making a pressure balance on 

the  mass element of air  i n  the tubing as follows: 

Ps 4 Pp + P* = P, 0- 16 

and 

l e t t i n g  Pa (disturbing pressure a t  mouth of tubing) = P1 - Po 
Pc (pressure change in reservoir)  = P - Po; 2 

hence, 

P, .(- P, +e,  = Pd 

Now by def in i t ion  

P, = Ria 

p,=  S Q  
and 

subs t i tu t ing  i n t o  equation (8-17 ) 

TQ + P& 3- p, -- Pa 

Now from equation ( 8 - 9  ) 

6 - 1 7  

8 - t 8  

dQ dP, - 
n c 



taking the in tegra l  of both sides 

or 

The constant term can be evaluated from the condition t h a t  when Q = 0, 

P = P . Hence, 
2 0  

Therefore, the equation of motion i n  f i n a l  form becomes 

- o r  subst i tut ing equation (3-20) i n to  equation (a-21) 

.. 

8 - 2 0  

B-2 2 

This again i s  a second order d i f f e ren t i a l  equation which may be writ ten 

i n  the  more familiar form 

The undamped na tura l  frequency i s  

/X = c J Z .  €3- 2 4 -  
xv WnR = Jc 

which i s  the same as i n  the  previous case. The damping r a t i o  fo r  t h i s  case, 

due t o  viscous damping i s  

Final ly ,  by Laplace transformation of equation fB-23), the  t ransfer  function 

f o r  a Helmholtz resonator in which the length of the aperture i s  larger 

than i ts  diameter i s  given as 

6 - 2 6  
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APPENDIX c 

ANALYSIS OF B R m E  NETWORK 

I n  Figure 3 i s  shown the general  c i r cu i t ry  of a briQe 

network. For t h i s  bridge t o  be balanced, i .e. , no output voltage, the 

following relationship must be t rue  

c - l  I$, = L , Z 2  

1*23 =x* 2 4  c - 2  

hence 

I n  the  par t icu lar  case under study, the bridge has two active elements, 

z2 and 24. 

+Bz i n  one element produces a -Az i n  the  other and thus the net resu l t  

i s  I2A4. 

general  terms under the assumption t h a t  Ri= 0 and 0 < R L  < 03. 

These elements produce a d i f f e r e n t i a l  output such t h a t  a 

A t ransfer  function f o r  t h i s  network w i l l  now be formulated i n  

Using Kirchoff's Current L a w  

o r  

C currents a t  Node #2 

s i m i  l a r l y  

C currents a t  Notie #3 

c - 4  

c - 5  
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and V 
3 

C - 6  

Now solving equation (C-4 ) and ( c - 5 )  simultaneously f o r  V2 

or 

L d et 
where 

and 

and 

V3 = 

or 

I -- 
R L  

d et 

C - 8  



and 
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Now from t h e  bridge configuration 

vo = V-J-Ve C -  9 

therefore  

Now assuming a d i f f e ren t i a l  var ia t ion  i n  z2 and 24 

Z2 = Z2 + AE2 = Z* +AX’ 

2, = 2,- A35+ = t * - h Z “  
where 

Subst i tut ing t h i s  re la t ionship i n t o  equation (c- t i  ) and 

rearranging terms 

c-ti 

c-I2 

Now (At*)” - eo 
RL 
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theref ore 

C - 13 

This i s  thus the general t ransfer  function f o r  a Wheatstone bridge with 

two d i f f e r e n t i a l  act ive arms. Now i n  par t icular ,  the elements of the  

bridge being used are capacitors as  shown i n  Figure (f- . The t ransfer  

function for  t h i s  par t icu lar  bridge is obtained as follows 

Letting 

and 

W H E R E  c, = c ,  = C s  

di f fe ren t ia t ing  

or 

subst i tut ing t h i s  r e su l t  i n to  equation (C-J3) 

t h e  sensi t ivi ty ,S,  i s  defined as 

C- I 4  

C - 1 5  

C- 16 

c-l a 
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NOW, equation (O-11) of Appendix-D expresses t o  a f i rs t  order 

i n  Ado/&, the  change i n  capacitance o f  one s ide of t h e  symmetrical 

capacit ive transducer t o  a d i f f e r e n t i a l  change i n  t h e  electrode spacing 

- 

or  

n u s ,  equation 6-15) can be expressed as 

C- \ ?  

Now, i n  t he  "3" domain, equations (2-i4),  and (c-15) can be wr i t ten  i n  Laplace 

Thus, equation (e-16) can be wri t ten in Laplace fcm' as 

and 

Now, as before 

c-20 

c - 2 1  
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t h e  ref ore 

Subst i tut ing equation (D-11) 

function i s  wr i t ten  as 

C-23 

i n t o  equation (C-23), t he  bridge t r ans fe r  

o r  i n  Bode form 

Now, i n  par t icu lar  

v, = V p N  fit 

or  i n  Laplace form 

C-24 

Subst i tut ing t h i s  re la t ionship i n t o  equation @ 2 4 ) ,  the  t r ans fe r  function 

can be wri t ten as 

C-26 

The response of t h i s  expression t o  a u n i t  h p l s e  i s  expressed i n  the  

time domain as 

where c - 2 7  



By exci t ing the  bridge w i  a 

c -7 

gh frequency A . C .  source, it can be 

assumed t h a t n  >>oC . Based on t h i s  assumption, equation (C-27) 

reduces t o  

which, when r ec t i f i ed ,  becomes D .C . value 

c -29 

C-30 

Thus, by a s swningf i  >>a , the  output voltage i s  insensi t ive t o  s m a l l  

changes i n  the bridge frequency and the  c i r c u i t  res is tance.  
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APPENDIX D 

THEO€BTICAL ANALYSIS OF A VARIAl3L;E CAPACITOR 
RELATING THE VARIATION IN CAPACITOR PMTE 

SPACING TO THE FZSULTANT CHANGE N CAPACITANCE - 
Ilc, 

Figure 'SG i s  a cross sect ional  diagram of a diaphragm type 

(var iable)  capacitor. The capacitor consis ts  of a deflectable diaphragm 

and a fixed electrode. The diaphrzgm i s  a metall ic menibrane of thickness 

h and i s  c i rcu lar ly  clamped along i ts  periphery. I t s  radius, measured 

from the  inside edge of the clamp, is "a". The electrode i s  a c i rcu lar  

metal l ic  s t ructure  of radius R ' .  

a common axis passing through t h e i r  centers normal t o  t h e i r  p a r a l l e l  

surfaces and are  separated by an air  gap of thickness d.. 

The diaphragm and the electrode have 

When the diaphragm i s  a t  ground poten t ia l  and the electrode i s  

exci ted by an A.C. source, a capacitor i s  formed. The capacitance of a 

p a r a l l e l  plate  capacitor i s  defined by the  dimension of the gap between the 

p a r a l l e l  p la te  and by the medium i n  the  gap. This i s  expressed as 

C =  kEoA 
d 

D- 1 

where A i s  the  cross sect ional  area of the  gap. 

d i s  the plate  separator. 

€0 i s  the  permitt ivity constant separating the plate .  

k i s  the  d i e l ec t r i c  constant. 

NOW, i n  par t icular ,  t he  capacitance of the diaphragm type capacitor when 

the  diaphragm i s  i n  i t s  equilibrium posit ion is  expressed as 

D- 2 
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When the diaphragm i s  acted upon by a disturbing force, i t s  

displacement from i t s  equilibrium position, as derived i n  Appendix A 

i s  given by equation (A-52) 

where 7 ,  i s  the  center deflection. 

of t h i s  equation for 0 < r 5 a. 

Figure 2.9 gives a graphical solution 

- 

Since the  capacitance of a p a r a l l e l  p la te  capacitor i s  inversely 

proportional t o  the  distance between the  plate ,  the  deflection,q, of the  

diaphragm from i t s  equilib'rium position resu1t.s 

in capacitance Ac. 

i n  a d i f f e ren t i a l  change 

h expression relat ing the diaphragm deflection t o  the resul tant  

capacitance change has been derived by L i l ly  which w i l l  now be presented. 

Derivation : 

1) Consider t he  electrode surface as consisting of concentric 

rings of inf ini tes imal ly width. 

t h e  air  gap on the diaphragm surface. 

Let i den t i ca l  r ings ex i s t  d i rec t ly  across 

Each ring has a width dr  and a 

radius r measured from the center axis as  shown i n  Figure 30 . 
pa i r  of ident ica l  rings (one on electrode and one on the diaphragm) 

represents an elemental pa ra l l e l  annulus capacitor separated by a distance 

do. 

each elemental capacitor i s  direct ly  proportional t o  i t s  annulus surface 

area, 2nrdr, and inversely proportional t o  the distance between the rings 

d.+ 7 .  

Each 

When the diaphragm i s  deflected a distance 7 ,  t he  capacitance of 

This i s  expressed as 

D-  3 
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where the distance i s  do - 1 i f  the  diaphragm i s  deflected towards the 

fixed electrode and do+ 1 when deflected away from it. 

The t o t a l  capacitance of t h e  dfaphragm type capacitor, when 

the  diaphragm i s  deflected, i s  equal t o  the summation of capacitance 

of each annular ring capacitor 

0- 4 

or  by integrating from r = 0 t o  r = R ' ,  an expression f o r  t he  capacitance 

i s  obtained 

0- 5 

2) I n  par t icular ,  it i s  necessary t o  find the  change i n  

capacitance, AC, resul t ing from a diaphragm deflection. This i s  obtained 

by subtracting equation (0-3 ) from equation (0-5 ) as follows 

AC,= C,  - c O R  C, 2 AC, = C 

or) considering only the absolute value of each term 

multiplied by 

(% S 

0 -  6 
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Rearranging and l e t t i ng  N = [SI2 and 

Equation ( 0 . 7 )  can be wri t ten as  

D-8  

This expression i s  ident ica l  t o  tha t  derived by Eilly except t h a t  equation 

( D - 8 )  i s  i n  the  rationalized MKS system while L i l l y ' s  derivation is  i n  

the  cgs system. The two systems d i f f e r  only by a factor - 1 . 
4nkc 

Integrating equation (0-S),  Li l ly  obtained the following 

relat ionship f o r  two cases 

where 

and 

0- /o 
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3 )  In conclusion, to a first  order approx-nation i n  W= M, 
de 

the  d i f f e r e n t i a l  change i n  capacitance i s  expressed as 

8 

where K i s  a function of gauge geometry 



I .  
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TABLE 2 

TABULATED VALUES OF THE GRAPHICAL SOLUTION FOR THE FLTNDAMENTAL 

UNDAMPED NATURAL FFEQUENCY OF ANY CIRCULAX, CLAWED, 

./E 

a 
1 .o 

95 
*9 
.85 
.8 
9 75 
.7 
65 

.6 
055 
-5 
-45 
.4 
035 
03 
-25 
.2 
15 
.1 
075 

-05 
.@5 

FLAT DIAPHRAGM UNDER RADIAL TENSION 

X 

3 ~ 9 6 2  
3 *170 
3 -143 
3.114 
3 -083 
3 -051 
3.018 
2 0983 
2.947 
2 -909 
2.869 
2.828 
2.786 
2.742 
2.696 
2.649 
2.602 
2 9553 
2 *505 
2.480 
2 0455 
2.430 
2.4048 

3 ~ 9 6 2  
3 0337 
3.492 
3.664 
3 -854 
4.068 
4.311 
4 -589 
4 .gl2 
5.281 
5 -738 
6.284 
6 9965 
7 -834 
8.987 

10.60 
13.01 
17.02 
25 -05 
33 -07 
49.10 
97 -20 

03 

10.22 
10.58 
10.98 
11.41 
11.88 
12.41 
13.01 
13 -69 
14.48 
15 -36 
16.46 

19.40 

24.23 
28.07 
33 -85 
43 -45 
62 -75 
82.01 

17 -77 

21.48 

120.5 
236.2 

03 

0 
1.086 
2 -317 
3 -725 
5 0347 
7.240 
9.480 

12.16 
15.44 
19 -43 
24.69 
31.50 
40.75 
53 *86 
73.49 

105 03 
162.5 
283.2 
621.2 

1087 *3 
2405 
9442 
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